Your C.O.C. #: 517814-01-01

Attention:Greg Foss

TOWN OF GIBSONS 474 South Fletcher Gibsons, BC CANADA VON 1V0

> Report Date: 2017/03/15 Report #: R2357631 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B717227 Received: 2017/03/09, 08:40

Max

Sample Matrix: DRINKING WATER # Samples Received: 3

		Date	Date		
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Analytical Method
Alkalinity - Water	2	2017/03/09	2017/03/09	BBY6SOP-00026	SM 22 2320 B m
Alkalinity - Water	1	2017/03/09	2017/03/10	BBY6SOP-00026	SM 22 2320 B m
Chloride by Automated Colourimetry	3	N/A	2017/03/09	BBY6SOP-00011	SM 22 4500-Cl- E m
Colour (True) by Kone Lab	3	N/A	2017/03/10	BBY6SOP-00057	SM 22 2120 C m
Total Coliforms & E.coli Potable W- MF	3	N/A	2017/03/09	BBY4SOP-00001	SM 22 9222 m
Conductance - water	2	N/A	2017/03/09	BBY6SOP-00026	SM 22 2510 B m
Conductance - water	1	N/A	2017/03/10	BBY6SOP-00026	SM 22 2510 B m
Fluoride	3	N/A	2017/03/09	BBY6SOP-00048	SM 22 4500-F C m
Hardness Total (calculated as CaCO3)	3	N/A	2017/03/13	BBY WI-00033	Auto Calc
Hardness (calculated as CaCO3)	3	N/A	2017/03/14	BBY WI-00033	Auto Calc
Mercury (Total) by CVAF	3	2017/03/10	2017/03/10	BBY7SOP-00015	BCMOE BCLM Oct2013 m
Na, K, Ca, Mg, S by CRC ICPMS (diss.)	3	N/A	2017/03/14	BBY7SOP-00002	EPA 6020A R1 m
Elements by CRC ICPMS (dissolved)	3	N/A	2017/03/10	BBY7SOP-00002	EPA 6020B R2 m
Na, K, Ca, Mg, S by CRC ICPMS (total)	3	N/A	2017/03/13	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Elements by CRC ICPMS (total)	3	N/A	2017/03/10	BBY7SOP-00003,	BCLM2005,EPA6020bR2m
Nitrate + Nitrite (N)	3	N/A	2017/03/09	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrite (N) by CFA	3	N/A	2017/03/09	BBY6SOP-00010	SM 22 4500-NO3- I m
Nitrogen - Nitrate (as N)	3	N/A	2017/03/10	BBY6SOP-00010	SM 22 4500-NO3 I m
Filter and HNO3 Preserve for Metals	3	N/A	2017/03/09	BBY7 WI-00004	BCMOE Reqs 08/14
pH Water (1)	2	N/A	2017/03/09	BBY6SOP-00026	SM 22 4500-H+ B m
pH Water (1)	1	N/A	2017/03/10	BBY6SOP-00026	SM 22 4500-H+ B m
Sulphate by Automated Colourimetry	3	N/A	2017/03/09	BBY6SOP-00017	SM 22 4500-SO42- E m
Total Dissolved Solids (Filt. Residue)	2	2017/03/09	2017/03/10	BBY6SOP-00033	SM 22 2540 C m
Total Dissolved Solids (Filt. Residue)	1	2017/03/14	2017/03/15	BBY6SOP-00033	SM 22 2540 C m
Turbidity	3	N/A	2017/03/09	BBY6SOP-00027	SM 22 2130 B m

Remarks:

Maxxam Analytics' laboratories are accredited to ISO/IEC 17025:2005 for specific parameters on scopes of accreditation. Unless otherwise noted, procedures used by Maxxam are based upon recognized Provincial, Federal or US method compendia such as CCME, MDDELCC, EPA, APHA.

All work recorded herein has been done in accordance with procedures and practices ordinarily exercised by professionals in Maxxam's profession using

Maxam ABureau Veritas Group Company

Your C.O.C. #: 517814-01-01

Attention:Greg Foss

TOWN OF GIBSONS 474 South Fletcher Gibsons, BC CANADA VON 1V0

> Report Date: 2017/03/15 Report #: R2357631 Version: 1 - Final

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: B717227 Received: 2017/03/09, 08:40

accepted testing methodologies, quality assurance and quality control procedures (except where otherwise agreed by the client and Maxxam in writing). All data is in statistical control and has met quality control and method performance criteria unless otherwise noted. All method blanks are reported: unless indicated otherwise, associated sample data are not blank corrected.

Maxxam Analytics' liability is limited to the actual cost of the requested analyses, unless otherwise agreed in writing. There is no other warranty expressed or implied. Maxxam has been retained to provide analysis of samples provided by the Client using the testing methodology referenced in this report. Interpretation and use of test results are the sole responsibility of the Client and are not within the scope of services provided by Maxxam, unless otherwise agreed in writing.

Solid sample results, except biota, are based on dry weight unless otherwise indicated. Organic analyses are not recovery corrected except for isotope dilution methods.

Results relate to samples tested.

This Certificate shall not be reproduced except in full, without the written approval of the laboratory.

Reference Method suffix "m" indicates test methods incorporate validated modifications from specific reference methods to improve performance.

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

(1) The BC-MOE and APHA Standard Method require pH to be analysed within 15 minutes of sampling and therefore field analysis is required for compliance. All Laboratory pH analyses in this report are reported past the BC-MOE/APHA Standard Method holding time.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager. Morgan Melnychuk, Burnaby Project Manager Email: MMelnychuk@maxxam.ca Phone# (604)638-8034 Ext:8034

This report has been generated and distributed using a secure automated process.

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

Success Through Science®

TOWN OF GIBSONS

Maxxam ID					QR4494		QR4495		
Sampling Date					2017/03/08 08:30		2017/03/08 09:30		
COC Number					517814-01-01		517814-01-01		
	UNITS	MAC	AO	OG	WELL#1	QC Batch	WELL#3	RDL	QC Batch
ANIONS									
Nitrite (N)	mg/L	1	-	-	<0.0050	8574235	<0.0050	0.0050	8574235
Calculated Parameters	1			<u> </u>	<u></u>	<u> </u>	<u></u>	<u></u>	
Filter and HNO3 Preservation	N/A	-	-	-	LAB	8572988	LAB		8572988
Total Hardness (CaCO3)	mg/L	-	-	-	40.7	8572813	50.5	0.50	8572813
Nitrate (N)	mg/L	10	-	-	0.446	8572850	1.08	0.020	8572850
Misc. Inorganics		. .							
Fluoride (F)	mg/L	1.5	-	-	0.067	8573706	0.060	0.010	8573696
Dissolved Hardness (CaCO3)	mg/L	-	-	-	39.2	8572814	50.4	0.50	8572814
Alkalinity (Total as CaCO3)	mg/L	_	-	-	44.1	8573450	50.3	0.50	8572985
Alkalinity (PP as CaCO3)	mg/L	-	-	-	<0.50	8573450	<0.50	0.50	8572985
Bicarbonate (HCO3)	mg/L		-		53.8	8573450	61.3	0.50	8572985
Carbonate (CO3)	mg/L	-	-	-	<0.50	8573450	<0.50	0.50	8572985
Hydroxide (OH)	mg/L	-	-	-	<0.50	8573450	<0.50	0.50	8572985
Anions									
Dissolved Sulphate (SO4)	mg/L	-	500	-	7.63	8574012	7.22	0.50	8574012
Dissolved Chloride (Cl)	mg/L	-	250	-	3.5	8574010	7.3	0.50	8574010
MISCELLANEOUS									
True Colour	Col. Unit	-	15	-	<5.0	8574243	<5.0	5.0	8574243
Nutrients									
Nitrate plus Nitrite (N)	mg/L	-	-	-	0.446	8574232	1.08	0.020	8574232
Physical Properties									
Conductivity	uS/cm	-	-	-	116	8573453	149	1.0	8572981
рН	рН	-	7.0:10.5	-	7.47	8573454	7.50		8572974
Physical Properties	<u>. </u>	<u>. </u>		<u>.</u>	<u> </u>		<u> </u>		
Total Dissolved Solids	mg/L	-	500	-	94	8576929	114	10	8573328
Turbidity	NTU	see remark	see remark	see remark	<0.10	8573691	<0.10	0.10	8573691
Elements	,	T	r	•	r		r		r
Total Mercury (Hg)	ug/L	1	-	-	<0.010	8574218	<0.010	0.010	8574218
Dissolved Metals by ICPMS	,	T	r	•	r		r		r
Dissolved Iron (Fe)	ug/L	-	300	-	<5.0	8574257	<5.0	5.0	8574257
Dissolved Manganese (Mn)	ug/L	-	50	-	<1.0	8574257	<1.0	1.0	8574257
Dissolved Silicon (Si)	ug/L	-	-	-	18500	8574257	21600	100	8574257
Dissolved Calcium (Ca)	mg/L	-	-	-	8.67	8572815	9.33	0.050	8572815
Dissolved Magnesium (Mg)	mg/L	-	-	-	4.25	8572815	6.57	0.050	8572815
No Fill No E	xceedance								
Grey Exce	eds 1 criteria	policy/level							
Black Exce	eds both crite	eria/levels							
RDL = Reportable Detection Lir	nit								

Maxxam ID						QR4494		QR4495		
Sampling Date						2017/03/08 08:30		2017/03/08 09:30		
COC Number						517814-01-01		517814-01-01		
		UNITS	MAC	AO	OG	WELL#1	QC Batch	WELL#3	RDL	QC Batch
Dissolved Potassium (K)		mg/L	-	-	-	2.31	8572815	2.89	0.050	8572815
Dissolved Sodium (Na)		mg/L	-	200	-	5.45	8572815	7.64	0.050	8572815
Total Metals by ICPMS	•			•	•	•	•			
Total Aluminum (Al)		ug/L	-	-	100	11.2	8574500	<3.0	3.0	8574500
Total Antimony (Sb)		ug/L	6	-	-	<0.50	8574500	<0.50	0.50	8574500
Total Arsenic (As)		ug/L	10	-	-	3.69	8574500	2.37	0.10	8574500
Total Barium (Ba)		ug/L	1000	-	-	2.6	8574500	2.9	1.0	8574500
Total Boron (B)		ug/L	5000	-	-	<50	8574500	<50	50	8574500
Total Cadmium (Cd)		ug/L	5	-	-	<0.010	8574500	<0.010	0.010	8574500
Total Chromium (Cr)		ug/L	50	-	-	<1.0	8574500	<1.0	1.0	8574500
Total Copper (Cu)		ug/L	-	1000	-	2.85	8574500	8.89	0.20	8574500
Total Iron (Fe)		ug/L	-	300	-	<5.0	8574500	<5.0	5.0	8574500
Total Lead (Pb)		ug/L	10	-	-	<0.20	8574500	0.38	0.20	8574500
Total Manganese (Mn)		ug/L	-	50	-	<1.0	8574500	<1.0	1.0	8574500
Total Selenium (Se)		ug/L	50	-	-	0.56	8574500	0.28	0.10	8574500
Total Uranium (U)		ug/L	20	-	-	0.29	8574500	0.16	0.10	8574500
Total Zinc (Zn)		ug/L	-	5000	-	<5.0	8574500	7.0	5.0	8574500
Total Magnesium (Mg)		mg/L	-	-	-	4.54	8573022	6.60	0.050	8573022
Microbiological Param.								-		
Total Coliforms	CI	FU/100mL	<1	-	-	<1	8573399	<1	1	8573399
E. coli	CI	FU/100mL	<1	-	-	<1	8573399	<1	1	8573399
No Fill	No Exce	eedance								
Grey	Exceeds	s 1 criteria p	olicy/level							
Black	Exceeds	s both crite	ria/levels							
RDL = Reportable Detect	tion Limit									

Maxxam ID					QR4496		
Sampling Date					2017/03/08 10:30		
COC Number					517814-01-01		
	UNITS	MAC	AO	OG	WELL#4	RDL	QC Batch
ANIONS							
Nitrite (N)	mg/L	1	-	-	<0.0050	0.0050	8574235
Calculated Parameters							
Filter and HNO3 Preservation	N/A	-	-	-	LAB		8572988
Total Hardness (CaCO3)	mg/L	-	-	-	38.6	0.50	8572813
Nitrate (N)	mg/L	10	-	-	0.394	0.020	8572850
Misc. Inorganics			1	1			
Fluoride (F)	mg/L	1.5	-	-	0.060	0.010	8573706
Dissolved Hardness (CaCO3)	mg/L	-	-	-	36.3	0.50	8572814
Alkalinity (Total as CaCO3)	mg/L	-	-	-	41.6	0.50	8572985
Alkalinity (PP as CaCO3)	mg/L	-	-	-	<0.50	0.50	8572985
Bicarbonate (HCO3)	mg/L	-	-	-	50.8	0.50	8572985
Carbonate (CO3)	mg/L	-	-	-	<0.50	0.50	8572985
Hydroxide (OH)	mg/L	-	-	-	<0.50	0.50	8572985
Anions							
Dissolved Sulphate (SO4)	mg/L	-	500	-	4.77	0.50	8574012
Dissolved Chloride (Cl)	mg/L	-	250	-	3.7	0.50	8574010
MISCELLANEOUS							
True Colour	Col. Unit	-	15	-	<5.0	5.0	8574243
Nutrients							-
Nitrate plus Nitrite (N)	mg/L	-	-	-	0.394	0.020	8574232
Physical Properties							-
Conductivity	uS/cm	-	-	-	106	1.0	8572981
рН	рН	-	7.0:10.5	-	7.54		8572974
Physical Properties							
Total Dissolved Solids	mg/L	-	500	-	94	10	8573328
Turbidity	NTU	see remark	see remark	see remark	<0.10	0.10	8573691
Elements		T	r	r			
Total Mercury (Hg)	ug/L	1	-	-	<0.010	0.010	8574218
Dissolved Metals by ICPMS		1					
Dissolved Iron (Fe)	ug/L	-	300	-	<5.0	5.0	8574257
Dissolved Manganese (Mn)	ug/L	-	50	-	<1.0	1.0	8574257
Dissolved Silicon (Si)	ug/L	-	-	-	18000	100	8574257
Dissolved Calcium (Ca)	mg/L	-	-	-	7.39	0.050	8572815
Dissolved Magnesium (Mg)	mg/L	-	-	-	4.33	0.050	8572815
No Fill No Excee	dance						
Grey Exceeds 2	L criteria polic	cy/level					
Black Exceeds b	ooth criteria/l	levels					
RDL = Reportable Detection Lir	nit						

Maxxam ID						QR4496		
Sampling Date						2017/03/08		
COC Number						517814-01-01		
		UNITS	MAC	AO	OG	WELL#4	RDL	QC Batch
Dissolved Potassium	n (K)	mg/L	-	-	-	2.24	0.050	8572815
Dissolved Sodium (M	√a)	mg/L	-	200	-	5.60	0.050	8572815
Total Metals by ICP	MS			+	4	+	1	
Total Aluminum (Al))	ug/L	-	-	100	4.3	3.0	8574500
Total Antimony (Sb))	ug/L	6	-	-	<0.50	0.50	8574500
Total Arsenic (As)		ug/L	10	-	-	3.65	0.10	8574500
Total Barium (Ba)		ug/L	1000	-		2.7	1.0	8574500
Total Boron (B)		ug/L	5000	-	-	<50	50	8574500
Total Cadmium (Cd)	1	ug/L	5	-	-	<0.010	0.010	8574500
Total Chromium (Cr	r)	ug/L	50	-	<u> </u>	<1.0	1.0	8574500
Total Copper (Cu)		ug/L	-	1000	-	3.68	0.20	8574500
Total Iron (Fe)		ug/L	-	300	<u> </u>	<5.0	5.0	8574500
Total Lead (Pb)		ug/L	10	-	-	0.32	0.20	8574500
Total Manganese (N	Лn)	ug/L	-	50	-	<1.0	1.0	8574500
Total Selenium (Se)		ug/L	50	-	<u> </u>	0.35	0.10	8574500
Total Uranium (U)		ug/L	20	-	-	0.15	0.10	8574500
Total Zinc (Zn)		ug/L	-	5000	<u> </u>	8.9	5.0	8574500
Total Magnesium (N	∕lg)	mg/L	-	-		4.39	0.050	8573022
Microbiological Par	am.					<u> </u>		
Total Coliforms		CFU/100mL	<1	-	-	<1	1	8573399
E. coli		CFU/100mL	<1	-	-	<1	1	8573399
No Fill	No Excee	dance						
Grey	Exceeds 1	L criteria policy	y/level					
Black	Exceeds t	ooth criteria/le	evels					
RDL = Reportable D	etection Lin	nit						

GENERAL COMMENTS

MAC,AO,OG: The guidelines that have been included in this report have been taken from the Canadian Drinking Water Quality Summary Table, February 2017.

Criteria A = Maximum Acceptable Concentration (MAC) / Criteria B = Aesthetic Objectives (AO) / Criteria C = Operational Guidance Values (OG) It is recommended to consult these guidelines when interpreting your data since there are non-numerical guidelines that are not included on this report.

Turbidity Guidelines:

1. Chemically assisted filtration: less than or equal to 0.3 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 1.0 NTU at any time.

2. Slow sand / diatomaceous earth filtration: less than or equal to 1.0 NTU in 95% of the measurements or 95% of the time each month. Shall not exceed 3.0 NTU at any time.

3. Membrane filtration: less than or equal to 0.1 NTU in 99% of the measurements made or at least 99% of the time each calendar month. Shall not exceed 0.3 NTU at any time.

Results relate only to the items tested.

Maxxam Job #: B717227

Report Date: 2017/03/15

QUALITY ASSURANCE REPORT

TOWN OF GIBSONS

			Matrix	Spike	Spiked	Blank	Method E	Blank	RPE)
QC Batch	Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
8572974	рН	2017/03/09			101	97 - 103	5.26	рН		
8572981	Conductivity	2017/03/09			98	80 - 120	<1.0	uS/cm		
8572985	Alkalinity (PP as CaCO3)	2017/03/09					<0.50	mg/L		
8572985	Alkalinity (Total as CaCO3)	2017/03/09			99	80 - 120	<0.50	mg/L		
8572985	Bicarbonate (HCO3)	2017/03/09					<0.50	mg/L		
8572985	Carbonate (CO3)	2017/03/09					<0.50	mg/L		
8572985	Hydroxide (OH)	2017/03/09					<0.50	mg/L		
8573328	Total Dissolved Solids	2017/03/10	101	80 - 120	104	80 - 120	<10	mg/L	3.1	20
8573450	Alkalinity (PP as CaCO3)	2017/03/10					<0.50	mg/L	NC	20
8573450	Alkalinity (Total as CaCO3)	2017/03/10	NC	80 - 120	101	80 - 120	<0.50	mg/L	1.2	20
8573450	Bicarbonate (HCO3)	2017/03/10					<0.50	mg/L	1.2	20
8573450	Carbonate (CO3)	2017/03/10					<0.50	mg/L	NC	20
8573450	Hydroxide (OH)	2017/03/10					<0.50	mg/L	NC	20
8573453	Conductivity	2017/03/10			100	80 - 120	<1.0	uS/cm	0.51	20
8573454	рН	2017/03/10			102	97 - 103			1.1	N/A
8573691	Turbidity	2017/03/09			101	80 - 120	<0.10	NTU	5.9	20
8573696	Fluoride (F)	2017/03/09	102	80 - 120	102	80 - 120	0.016, RDL=0.010	mg/L	1.7	20
8573706	Fluoride (F)	2017/03/09	99	80 - 120	104	80 - 120	0.014, RDL=0.010	mg/L		
8574010	Dissolved Chloride (Cl)	2017/03/09	108	80 - 120	100	80 - 120	<0.50	mg/L	NC	20
8574012	Dissolved Sulphate (SO4)	2017/03/09	NC	80 - 120	98	80 - 120	<0.50	mg/L	1.3	20
8574218	Total Mercury (Hg)	2017/03/10	101	80 - 120	107	80 - 120	<0.010	ug/L	NC	20
8574232	Nitrate plus Nitrite (N)	2017/03/09	100	80 - 120	103	80 - 120	<0.020	mg/L	3.2	25
8574235	Nitrite (N)	2017/03/09	98	80 - 120	98	80 - 120	<0.0050	mg/L	NC	20
8574243	True Colour	2017/03/10			107	80 - 120	<5.0	Col. Unit	11	20
8574257	Dissolved Iron (Fe)	2017/03/10	105	80 - 120	111	80 - 120	<5.0	ug/L		
8574257	Dissolved Manganese (Mn)	2017/03/10	104	80 - 120	104	80 - 120	<1.0	ug/L		
8574257	Dissolved Silicon (Si)	2017/03/10					<100	ug/L		
8574500	Total Aluminum (Al)	2017/03/10	107	80 - 120	107	80 - 120	<3.0	ug/L		
8574500	Total Antimony (Sb)	2017/03/10	103	80 - 120	100	80 - 120	<0.50	ug/L		
8574500	Total Arsenic (As)	2017/03/10	108	80 - 120	103	80 - 120	<0.10	ug/L		
8574500	Total Barium (Ba)	2017/03/10	96	80 - 120	99	80 - 120	<1.0	ug/L		

Page 8 of 11

Maxxam Analytics International Corporation o/a Maxxam Analytics Burnaby: 4606 Canada Way V5G 1K5 Telephone(604) 734-7276 Fax(604) 731-2386

Maxxam Job #: B717227 Report Date: 2017/03/15

QUALITY ASSURANCE REPORT(CONT'D)

TOWN OF GIBSONS

		Matrix	Spike	Spiked	Blank	Method I	Blank	RPD	
Parameter	Date	% Recovery	QC Limits	% Recovery	QC Limits	Value	UNITS	Value (%)	QC Limits
Total Boron (B)	2017/03/10	111	80 - 120	100	80 - 120	<50	ug/L		
Total Cadmium (Cd)	2017/03/10	103	80 - 120	100	80 - 120	<0.010	ug/L		
Total Chromium (Cr)	2017/03/10	104	80 - 120	105	80 - 120	<1.0	ug/L		
Total Copper (Cu)	2017/03/10	NC	80 - 120	105	80 - 120	<0.20	ug/L		
Total Iron (Fe)	2017/03/10	106	80 - 120	114	80 - 120	<5.0	ug/L		
Total Lead (Pb)	2017/03/10	100	80 - 120	100	80 - 120	<0.20	ug/L	0.20	20
Total Manganese (Mn)	2017/03/10	103	80 - 120	100	80 - 120	<1.0	ug/L		
Total Selenium (Se)	2017/03/10	104	80 - 120	105	80 - 120	<0.10	ug/L		
Total Uranium (U)	2017/03/10	100	80 - 120	98	80 - 120	<0.10	ug/L		
Total Zinc (Zn)	2017/03/10	NC	80 - 120	108	80 - 120	<5.0	ug/L		
Total Dissolved Solids	2017/03/15	102	80 - 120	92	80 - 120	<10	mg/L	7.4	20
	ParameterTotal Boron (B)Total Cadmium (Cd)Total Chromium (Cr)Total Copper (Cu)Total Iron (Fe)Total Lead (Pb)Total Manganese (Mn)Total Selenium (Se)Total Uranium (U)Total Zinc (Zn)Total Dissolved Solids	Parameter Date Total Boron (B) 2017/03/10 Total Cadmium (Cd) 2017/03/10 Total Chromium (Cr) 2017/03/10 Total Copper (Cu) 2017/03/10 Total Iron (Fe) 2017/03/10 Total Lead (Pb) 2017/03/10 Total Selenium (Se) 2017/03/10 Total Vranium (U) 2017/03/10 Total Zinc (Zn) 2017/03/10	Matrix Parameter Date % Recovery Total Boron (B) 2017/03/10 111 Total Cadmium (Cd) 2017/03/10 103 Total Chromium (Cr) 2017/03/10 104 Total Copper (Cu) 2017/03/10 NC Total Iron (Fe) 2017/03/10 106 Total Lead (Pb) 2017/03/10 100 Total Selenium (Se) 2017/03/10 103 Total Uranium (U) 2017/03/10 104 Total Zinc (Zn) 2017/03/10 100 Total Dissolved Solids 2017/03/10 100	Matrix Spike Parameter Date % Recovery QC Limits Total Boron (B) 2017/03/10 111 80 - 120 Total Cadmium (Cd) 2017/03/10 103 80 - 120 Total Chromium (Cr) 2017/03/10 104 80 - 120 Total Copper (Cu) 2017/03/10 NC 80 - 120 Total Iron (Fe) 2017/03/10 NC 80 - 120 Total Lead (Pb) 2017/03/10 106 80 - 120 Total Selenium (Se) 2017/03/10 100 80 - 120 Total Vranium (U) 2017/03/10 104 80 - 120 Total Jinc (Zn) 2017/03/10 100 80 - 120 Total Selenium (Se) 2017/03/10 104 80 - 120 Total Uranium (U) 2017/03/10 104 80 - 120 Total Zinc (Zn) 2017/03/10 100 80 - 120 Total Dissolved Solids 2017/03/10 102 80 - 120	Matrix ParameterMatrix $\ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ \ $	MatrixSpiked BankParameterDate% RecoveryQC Limits% RecoveryQC LimitsTotal Boron (B)2017/03/1011180 - 12010080 - 120Total Cadmium (Cd)2017/03/1010380 - 12010080 - 120Total Chromium (Cr)2017/03/1010480 - 12010580 - 120Total Copper (Cu)2017/03/10NC80 - 12010580 - 120Total Iron (Fe)2017/03/1010680 - 12011480 - 120Total Lead (Pb)2017/03/1010080 - 12010080 - 120Total Selenium (Se)2017/03/1010480 - 12010580 - 120Total Uranium (U)2017/03/1010080 - 1209880 - 120Total Zinc (Zn)2017/03/10NC80 - 12010880 - 120Total Dissolved Solids2017/03/10NC80 - 1209280 - 120	MatrixSpikeSpikeMethod isParameterDate $\%$ RecoveryQC Limits $\%$ RecoveryQC LimitsValueTotal Boron (B)2017/03/10111 $80 \cdot 120$ 100 $80 \cdot 120$ <50 Total Cadmium (Cd)2017/03/10103 $80 \cdot 120$ $80 \cdot 120$ <0.010 Total Chromium (Cr)2017/03/10104 $80 \cdot 120$ $80 \cdot 120$ <0.010 Total Copper (Cu)2017/03/10NC $80 \cdot 120$ $80 \cdot 120$ <0.201 Total Iron (Fe)2017/03/10106 $80 \cdot 120$ $80 \cdot 120$ <0.201 Total Lead (Pb)2017/03/10100 $80 \cdot 120$ $80 \cdot 120$ <0.201 Total Selenium (Se)2017/03/10104 $80 \cdot 120$ $80 \cdot 120$ <0.010 Total Uranium (U)2017/03/10100 $80 \cdot 120$ $80 \cdot 120$ <0.010 Total Zinc (Zn)2017/03/10NC $80 \cdot 120$ $80 \cdot 120$ <0.010 Total Dissolved Solids2017/03/10100 $80 \cdot 120$ <0.010	Matrix SpikeSpike/SpikeMethod Spike/SpikeMethod Spike/SpikeParameterDate $\%$ RecoveryQC Limits $\%$ RecoveryQC Limits $\%$ RecoveryQC Limits $\%$ Spike/Spi	MdrtxParameterSpikeMethodMethodMethodMethodParameterDate% RecoveryQ Linits% RecoveryQ LinitsValueValue (% Nalue)Value (% Nalue)Total Boron (B)2017/03/1011180 12010080 - 120<

N/A = Not Applicable

Duplicate: Paired analysis of a separate portion of the same sample. Used to evaluate the variance in the measurement.

Matrix Spike: A sample to which a known amount of the analyte of interest has been added. Used to evaluate sample matrix interference.

Spiked Blank: A blank matrix sample to which a known amount of the analyte, usually from a second source, has been added. Used to evaluate method accuracy.

Method Blank: A blank matrix containing all reagents used in the analytical procedure. Used to identify laboratory contamination.

NC (Matrix Spike): The recovery in the matrix spike was not calculated. The relative difference between the concentration in the parent sample and the spike amount was too small to permit a reliable recovery calculation (matrix spike concentration was less than the native sample concentration)

NC (Duplicate RPD): The duplicate RPD was not calculated. The concentration in the sample and/or duplicate was too low to permit a reliable RPD calculation (absolute difference <= 2x RDL).

Success Through Science®

Report Date: 2017/03/15

TOWN OF GIBSONS

VALIDATION SIGNATURE PAGE

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Brilly ton

Andy Lu, Ph.D., P.Chem., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. For Service Group specific validation please refer to the Validation Signature Page.

and a second sec						okee Fairle			inca		,					Page of
	INVOICE TO:				Report Inform	ation					Project In	formation			Laboratory Use	Only
Pany Name #2371 TOW	N OF GIBSONS		Company Na	ime					Quotation	#	B60124	and sharps			Maxxam Job #	Bottle Order #:
Greg Foss 474 South Fle	etcher		Contact Nam					-	P.O. #						0717227	
Gibsons BC V	/0N 1V0		- Charles						Project #						Chain Of Custody Record	Project Manager
e (604) 741-102 greg.foss@gil	20 x	-9735 x	Phone	11.00		Fax:			Site #	me			-			Morgan Melnychu
grogrooogggn	esenered, intep@giosone.ea	1	Email	Instructions		T		ANALX	Sampled B	by DI EACE				_	C#517814-01-01	
J			opeca	a manuchoma		-		ANAL I.		I	E BE SPECIFIC)				Turnaround Time (TAT) Re	quired:
CCME BC Water Quality					(N/X)	y (incl. Micro)								Regular (will be a) Standard Please ni days - co	(Standard) TAT: pplied if Rush TAT is not specified): TAT = 5-7 Working days for most lests ote: Standard TAT for certain tests such as BC Intect your Project Manager for details.	D and Dioxins/Furans a
SAMPLES MUST BE K	EPT COOL (< 10°C) FROM TIME OF S		L DELIVERY 1	CO MAXXAM	Field Filtered	iced Potabilit								Job Spe 1 DAY Rush Co	ecific Rush TAT (if applies to entire submis 2 Day 3 Day Date Req onfirmation Number:	sion) uired: [
Sample Barcode Label	Sample (Location) Identification	Date	Sampled	Time Sampled	Matrix Wetals	Enhar								# of Bottle	ns Comments	all lab for #)
	WELL # 1	171	8050	830		V										
	WELL # 3		~	930		V										
	WELC II 4			1030		V				-						
			~	10						-						
														-		
														×.		
• RELINQUISHED BY: (Signat	ture/Print)	703 68) Time 1100	> Mola	WILL DU	BY: (Signatu	pe/Print)		1017	0309	08:4(# jars used not submit	and ted Time Se	ensitive Te	Lab Use Only mperature (°C) on Receipt Custod	Seal Intact on Cooler?

Maxxam Ahalytics International Corporation o/a Maxxam Analytics