718 North Road Traffic Impact Study

Prepared for:

CityState Consulting Group Ltd.

Prepared by:

101a 1952 kingsway ave. port coquitlam, bc canada v3c 6c2

604.936.6190
 www.cts-bc.com

€ 604.936.6190
 № 604.936.6175
 ♥ www.cts-bc.com

Date: File No: May 10, 2024 9090-01

BY EMAIL

Dear

Re: 718 North Road, Town of Gibsons – Final Traffic Impact Study

Creative Transportation Solutions Ltd. (CTS) is pleased to submit this *Final Traffic Impact Study* for the proposed mixed-use development located at 718 North Road in the Town of Gibsons, BC. The primary objectives of this assignment were:

- 1. To conduct a Traffic Impact Study for the proposed mixed-use development, and
- 2. To document the site conditions, data, analyses, key findings, and recommendations (if any) in a report that meets the requirements set out by the client, Town of Gibsons, and Ministry of Transportation & Infrastructure (Ministry).

TABLE OF CONTENTS

1.0 1.1	BACKGROUND
1.2	Study Area 1
1.3	Study Periods
1.4	Existing Road Network and Intersections
2.0	BASE TRAFFIC VOLUMES
3.0 3.1	SITE TRAFFIC VOLUMES 14 Trip Generation 14
3.2	Site Trip Distribution14
4.0	BASE + SITE TRAFFIC VOLUMES
5.0 5.1	TRAFFIC ANALYSIS
5.2	Evaluation Approach23
6.0 6.1	PARKING ANALYSIS
6.2	Alternate Parking Rate Rationale
6.3	Other Parking Measures
6.4	Tandem Parking31
6.5	Off-Street Bicycle Parking31
6.6	Loading
6.7	Garbage and Recycling32
7.0	SWEPT PATH
8.0	CONCLUSIONS
9.0	RECOMMENDATIONS

LIST OF FIGURES

FIGURE 1 STUDY AREA AND ADJACENT ROAD NETWORK	2
FIGURE 2 EXISITNG LANING CONFIGURATION	5
FIGURE 3 2023 FRIDAY AM PEAK HOUR BASE TRAFFIC VOLUMES	7
FIGURE 4 2023 FRIDAY PM BASE TRAFFIC VOLUMNES	8
FIGURE 5 2028 FRIDAY AM PEAK HOUR BASE TRAFFIC VOLUMES	10
FIGURE 6 2028 FRIDAY PM PEAK HOUR BASE TRAFFIC VOLUMES	11
FIGURE 7 2033 FRIDAY AM PEAK HOUR BASE TRAFFIC VOLUMES	12
FIGURE 8 2033 FRIDAY PM PEAK HOUR BASE TRAFFIC VOLUMES	13
FIGURE 9 2028 FRIDAY AM PEAK HOUR SITE GENERATED TRAFFIC VOLUMES	15
FIGURE 10 2028 FRIDAY PM PEAK HOUR SITE GENERATED TRAFFIC VOLUMES	16
FIGURE 11 2028 FRIDAY AM PEAK HOUR BASE + SITE TRAFFIC VOLUMES	18
FIGURE 12 2028 FRIDAY PM PEAK HOUR BASE + SITE TRAFFIC VOLUMES	19
FIGURE 13 2033 FRIDAY AM PEAK HOUR BASE + SITE TRAFFIC VOLUMES	20
FIGURE 14 2033 FRIDAY PM PEAK HOUR BASE + SITE TRAFFIC VOLUMES	21
FIGURE 16 MSU TRUCK SWEPT PATH	34
FIGURE 17 FRONT LOAD GARBAGE TRUCK SWEPT PATH	35

LIST OF TABLES

TABLE 1 SUMMARY OF SITE GENERATED TRAFFIC	14
TABLE 2 LEVEL OF SERVICE AND CORRESPONDING AVERAGE DELAY	23
TABLE 3 SIGNALIZED INTERSECTION CAPACITY ANALYSIS SUMMARY NORTH ROAD (HIGHWAY 101) AT REED ROAD) 25
TABLE 4 SIGNALIZED INTERSECTION CAPACITY ANALYSIS SUMMARY NORTH ROAD/SCHOOL ROAD AT GIBSONS WAY (HIGHWAY 101)	26
TABLE 5 OFF-STREET VEHICLE PARKING SPACE EQUIREMENT (BYLAW RATE)	29
TABLE 6 OFF-STREET VEHICLE PARKING SPACES REQUIREMENT (METRO RATE)	30
TABLE 7 OFF-STREET BICYCLE PARKING REQUIREMENT	31

1.0 BACKGROUND

1.1 Study Site

The client is proposing to develop the site at 718 North Road, Town of Gibsons, BC, as a a six-storey building. The proposed mixed-use development is to consist of 124 residential units and a 3,637 ft² (337.9 m²) daycare. The existing zoning is C-1 (Upper Gibsons Commercial District 1), and the legal description is:

• Lot K, Block 7, Plan VAP23077, District Lot 688, New Westminster Land District Lot 1.

For the purpose of this study, the mixed-use development was assumed to be completed and fully occupied by 2028. A copy of the site plan referenced by this study is included as **APPENDIX A**.

1.2 Study Area

The study area is bounded by Reed Road to the north, the site property line to the east, Gibsons Way to the south, and North Road (Highway 101) to the west. **FIGURE 1** illustrates the study area and the road network adjacent to the site.

FIGURE 1 STUDY AREA AND ADJACENT ROAD NETWORK

For the purpose of this study, the following key intersections were included in the analysis:

- 1) Reed Road & North Road/Highway 101 (signalized); and
- 2) North Road/School Road & Gibsons Way/Highway 101 (signalized).

1.3 Study Periods

Friday AM and PM peak hours were selected as the design hours for this study as that is when both the adjacent road network typically carries the highest traffic volumes, and the proposed mixed-use development generates the maximum traffic volumes. For the purpose of this study, the mixed-use development was assumed to be completed and fully occupied by 2028.

The following horizon years were selected for this study:

- 2023 Existing Base i.e. existing base traffic scenario.
- 2028 Future Base i.e. future base traffic scenario without the mixed-use development.
- 2028 Future Base + Site i.e., fully built-out & occupied.
- 2033 Future Base i.e. future base traffic scenario without the mixed-use development.
- 2033 Future Base + Site i.e. 5 years post build-out.

1.4 Existing Road Network and Intersections

North Road (Highway 101) is an arterial highway within the authority of the Ministry of Transportation & Infrastructure (MOTI). The highway services two BC Ferries terminals and provides access to various communities along the coast. Within the study area, Highway 101 has a two-lane cross-section and designated bicycle lanes. The posted speed limit is 50km/h.

Reed Road is a two-lane local road. The road connects residential areas to the east and west of Highway 101. The posted speed is 50 km/h.

Gibsons Way (Highway 101) is a two-lane arterial highway with a designated bicycle lane on the south side. The posted speed is 50 km/h.

Gibsons Way is a two-lane collector roadway with designated bicycle lanes, which connects Upper Gibsons and Lower Gibsons. The posted speed is 50 km/h.

School Road is a two-lane collector roadway that connects Upper Gibsons and Lower Gibsons. The posted speed is 30 km/h.

North Road (Highway 101) and Reed Road

- North Road (Highway 101) intersects Reed Road at a signalized "+" intersection. On the north approach there is a shared left-turn/through/right-turn lane. On the east approach there is a shared left-turn/through/right-turn lane. On the south approach there is a shared left-turn/through/right-turn lane. On the west approach there is a shared left-turn/through/right-turn lane.
- There are marked pedestrian crosswalks on the east, south and west approaches, to the intersection.
- There are designated bicycle lanes on both sides of North Road, south of the intersection.
- All quadrants are illuminated.

Gibsons Way (Highway 101) / North Road (Highway 101) / School Road

- North Road (Highway 101) intersects Gibsons Way at a signalized "+" intersection. On the north approach there is a shared left-turn/through lane, and a channelized right-turn lane. On the east approach, there is a left-turn lane, and a shared through/right-turn lane. On the south approach there is a shared left-turn /through/right-turn lane. On the west approach there is a left-turn lane, and a shared through/right-turn lane.
- There are marked pedestrian crosswalks on all approaches to the intersection.
- There are designated bicycle lanes are on both sides of Gibsons Way east of intersection, on the south side of Gibsons Way (Highway 101) west of intersection, on the west side of School Road south of the intersection, and on the east side of North Road (Highway 101) north of intersection.
- The northwest and southeast quadrants are illuminated.

The existing lane configuration for each study intersection is illustrated by **FIGURE 2**.

FIGURE 2 EXISITNG LANING CONFIGURATION

2.0 BASE TRAFFIC VOLUMES

2023 Base Traffic Volumes

CTS conducted intersection traffic turning movement counts on Friday, 24 November 2023 from 07:00 to 09:30 and from 14:30 to 17:30, to document existing base traffic volumes within the study area. On the day of the traffic counts, the pavement on the roads was dry, all public schools in Gibsons were open and there was no weather event that could have adversely affected traffic patterns. The traffic turning movement count data was tabulated and reviewed to ensure data integrity and validity. The tabulated traffic turning movement count data sheets are included as **APPENDIX B**.

The following design hours were selected based on the peak hours observed at the study intersections:

- Friday AM Peak Hour 08:15 to 09:15
- Friday PM Peak Hour 14:30 to 15:30

FIGURE 3 and **FIGURE 4** illustrate the 2023 Friday AM and PM peak hour base traffic volumes, respectively.

FIGURE 3 2023 FRIDAY AM PEAK HOUR BASE TRAFFIC VOLUMES

FIGURE 4 2023 FRIDAY PM BASE TRAFFIC VOLUMNES

2028 Future Base Traffic Volumes

Year 2028 was identified as the year of build-out for the proposed mixed-use development. The 2023 base traffic volumes were factored up by a traffic volume growth rate of 2.0% per annum (simple straight line) to represent the initial future year 2028 base traffic volumes. The 2.0% annual growth rate is an acceptable rate that CTS has used in past traffic studies in the Town of Gibsons.

Traffic volumes were also estimated for the following nearby proposed developments:

- 826 Gibsons Way; and
- 835 Gibsons Way.

The traffic volumes from the above developments were superimposed on the initial future year 2028 base traffic volumes to give the total future year 2028 base traffic volumes. **FIGURE 5** and **FIGURE 6** illustrate the 2028 Friday AM and PM peak hour traffic volumes for the future base scenarios with no development traffic, respectively.

2033 Future Base Traffic Volumes

The 2023 base traffic volumes were factored up by a traffic volume growth rate of 2.0% per annum (simple straight line) to represent initial base year of 2033 volumes. The traffic volumes from the above developments were superimposed on the initial future year 2033 base traffic volumes to give the total future year 2033 base traffic volumes. **FIGURE 7** and **FIGURE 8** illustrate the 2033 Friday AM and PM peak hour traffic volumes for the future base scenarios with no development traffic, respectively.

FIGURE 5 2028 FRIDAY AM PEAK HOUR BASE TRAFFIC VOLUMES

FIGURE 6 2028 FRIDAY PM PEAK HOUR BASE TRAFFIC VOLUMES

FIGURE 7 2033 FRIDAY AM PEAK HOUR BASE TRAFFIC VOLUMES

FIGURE 8 2033 FRIDAY PM PEAK HOUR BASE TRAFFIC VOLUMES

3.0 SITE TRAFFIC VOLUMES

3.1 Trip Generation

The proposed mixed-use development will comprise 124 multi-family residential units, and 3,637 ft² of daycare. To predict the future traffic volumes for the site, the published vehicle trip generation rates from the Institute of Transportation Engineers (ITE) *Trip Generation Manual 11th Edition Code 221 - Multifamily Housing (Mid-Rise)*, and *Code 565 – Daycare Center*, were referenced. For the purpose of this study, the pass-by traffic was assumed to be zero so that the projected traffic volumes would represent the worst-case scenario and result in a more conservative assessment. **TABLE 1** summarizes the forecast site generated traffic for the proposed development.

Land Use	Peak Hour	Trip Generation	Scope of	Vehicle Trip Generation	Trip Rate	Directio	nal Split	Peak Hour Volumes (vph)		
		Variable	Variable		Source	% in	% out	in	out	total
Residential - Multifamily	Weekday Morning	Dwelling Units	124	0.37	ITE 11th	23%	77%	11	35	46
Codominiums)	Weekday Afternoon	Dweining Onits		0.39	Code 221	61%	39%	30	19	49
Davrara	Weekday Morning	1 000 Saft CL A	2.04	11.00	ITE 11th	53%	47%	22	19	41
Daycare	Weekday Afternoon	1,000 Sqit GLA	5.04	11.12	Code 565	47%	53%	19	22	41
NET WEEKDAY MORNING PEAK HOUR SITE GENERATED VICHLE TRIPS										87
NET WEEKDAY AFTERNOON PEAK HOUR SITE GENERATED VICHLE TRIPS										90

TABLE 1 SUMMARY OF SITE GENERATED TRAFFIC

From **TABLE 1**, the proposed mix-use development is forecast to generate a total of 87 vehicle trips (33 inbound, 54 outbound) during the weekday AM peak hour and 90 vehicle trips (49 inbound, 41 outbound) during the weekday PM peak hour. The AM peak hour traffic volume is equivalent to 1 vehicle movement every 0.7 minutes, while the PM peak hour traffic volume is equivalent to 1 vehicle movement every 0.7 minutes.

For reference, the Ministry of Transportation & Infrastructure threshold for undertaking traffic impact studies, is when the site generated vehicle volumes are 100 vehicle trips or more in any peak hour. Therefore, the proposed development does not meet the Provincial threshold for warranting a traffic impact study as the peak site generated volumes are only 90% of the threshold.

3.2 Site Trip Distribution

Trip distribution parameters to distribute the site generated vehicle trips to/from the site were developed from existing traffic patterns entering and exiting the study area for the PM peak hour. The weekday AM and PM peak hour site generated traffic volumes for the proposed development for the build-out year of 2028 are illustrated by **FIGURE 9** and **FIGURE 10**.

- 0 000 - 0 I 2 **Reed Rd** 10 1 0-00 VN 37 Aurora Way North Rd (Hwy 101) LEGEND Seacot Way Existing Major Road Existing Traffic Signal Study Site Other Developments ←10 Traffic Volumes Inbound 32 veh/h NOTE: NETWORK IS NOT TO SCALE SITE Outbound 55 veh/h 87 Total veh/h Hillcrest Rd Crucil Rd 4 2235 - 0 **F**0 Gibsons Way (Hwy 101) **Gibsons Way** 10 1 0-07 school Rd

FIGURE 9 2028 FRIDAY AM PEAK HOUR SITE GENERATED TRAFFIC VOLUMES

FIGURE 10 2028 FRIDAY PM PEAK HOUR SITE GENERATED TRAFFIC VOLUMES

4.0 BASE + SITE TRAFFIC VOLUMES

2028 Future Base + Site Traffic Volumes (Build-out Year)

FIGURE 11 illustrates the total projected traffic for the 2028 Friday AM peak hour consisting of both base, and site generated traffic from the proposed mixed-use development. It is the result of superimposing **FIGURE 9** onto **FIGURE 5**.

FIGURE 12 illustrates the total projected traffic for the 2028 Friday PM peak hour consisting of both base, and site generated traffic from the proposed mixed-use development. It is the result of superimposing **FIGURE 10** onto **FIGURE 6**.

2033 Future Base + Site Traffic Volumes (5 Years Post Build-out)

FIGURE 13 illustrates the total projected traffic for the 2033 Friday AM peak hour consisting of both base and site generated traffic from the proposed mixed-use development. It is the result of superimposing **FIGURE 9** onto **FIGURE 7**.

FIGURE 14 illustrates the total projected traffic for the 2033 Friday PM peak hour consisting of both base and site generated traffic from the proposed mixed-use development. It is the result of superimposing **FIGURE 10** onto **FIGURE 8**.

FIGURE 11 2028 FRIDAY AM PEAK HOUR BASE + SITE TRAFFIC VOLUMES

FIGURE 12 2028 FRIDAY PM PEAK HOUR BASE + SITE TRAFFIC VOLUMES

FIGURE 13 2033 FRIDAY AM PEAK HOUR BASE + SITE TRAFFIC VOLUMES

FIGURE 14 2033 FRIDAY PM PEAK HOUR BASE + SITE TRAFFIC VOLUMES

5.0 TRAFFIC ANALYSIS

5.1 Capacity Analysis

Capacity analysis was performed at each study intersection to determine the overall intersection and individual movement Level of Service (LOS) that is provided to motorists. The LOS for intersections and individual movements are defined in terms of delay (seconds per vehicle), which is a measure of driver discomfort and frustration, fuel consumption and lost travel time.

An intersection or movement LOS can range from "A" (Excellent) to "E" (Poor). A LOS of "F" (Fail) indicates that an intersection or individual movement is failing because the intersection or movement is over capacity and delays are excessive. A LOS of "D" (Fair) or better is considered acceptable by many larger public agencies for overall intersection, through and right-turn movements, and a LOS of "E" (Poor) or better is considered acceptable for left-turn movements, at signalized intersections. However, for smaller communities like Sechelt where motorist tolerance for vehicle delay is expected to be less, a LOS of "C" (Good) was used as the threshold for when operational and/or geometrical improvements may be considered.

With respect to the intersection and individual movement analysis, the following tables evaluate the performance of the study road network with and without the future traffic volumes generated by the proposed mixed-use development. The study area intersections were analysed based on capacity analysis methods from the *Highway Capacity Manual* published by the Transportation Research Board of the National Academies of Science in the United States. Synchro Version 10.0 was used to analyze the intersection and individual movement level of service for signalized intersections. Highway Capacity Software HCS 7.9 was used to analyze the intersection and individual movement level of service for unsignalized intersections. These tools conduct a rigorous analysis of peak hour intersection operation based on intersection lane configurations, traffic signal timing and phasing and turning movement volumes. The purpose of the analysis is to identify movements that are or will become problematic under future scenarios.

Measures of effectiveness generated by the calculations include the following:

- Volume to capacity ratio (V/C) for each movement or lane group where there are shared lanes. This is the proportion of available capacity used by the expected demand.
- Average delay per vehicle (Delay) in the lane group over the hour analysed. This indicates a weighted average delay in seconds per vehicle for drivers approaching during the hour analysed.
- 95th percentile queue length (m). This indicates the length of the vehicle queues which 95% of the time are not exceeded.

 Intersection Level of Service. This indicates the weighted average delay for the intersection during the hour analysed, converted to a letter representing a range of delays. The ranges of delays corresponding to each Level of Service are summarized in TABLE 2.

Level of	Average Delay Veh	/ (Seconds per icle)
Service	Signalized Intersection	Unsignalized Intersection
A	0 - 10	0-10
В	>10 - 20	>10 - 15
С	>20 - 35	>15 - 25
D	>35 - 55	>25 - 35
E	>55 - 80	>35 - 50
F	>80	>50

TABLE 2
LEVEL OF SERVICE AND CORRESPONDING AVERAGE DELAY

5.2 Evaluation Approach

The signalized intersection capacity analysis was conducted using the existing and optimized signal timing plans and the existing intersection geometry unless intersection upgrades were specified with the build-out of the study site.

The following assumptions were made with respect to the intersection capacity analysis:

- Saturation flow rate \rightarrow 1,800 passenger cars/hour of green/lane (pcphgpl).
- Truck percentage \rightarrow 2% for roads.
- Peak Hour Factor (PHF) → 0.73 for the weekday AM peak hour and 0.78 for the weekday PM peak hour which are an average of the PHF's from the traffic turning movement counts.

Saturation flow rate is the equivalent hourly rate at which previously queued vehicles can traverse an intersection approach under prevailing conditions, assuming that the green signal is always available, and no lost times are experienced. It is a base rate to which adjustment factors are applied.

Peak Hour Factor is a measure of traffic demand fluctuation within the analysis hour. The closer the number is to 1.00, the less fluctuation during the hour.

TABLE 3 through **TABLE 4** summarizes and compares the main performance measures of the intersection capacity analysis for signalized intersections.

Note, the volume to capacity ratio (v/c) and the 95th percentile queue in meters, were summarized for the signalized intersections whereas, delay time in seconds for each lane group and the 95th percentile queue in vehicle numbers, were summarized for the unsignalized intersections. Wherever feasible, attempts at improvements have been made to maintain intersection and approach movement level of service standards for each of the post-development scenarios.

The capacity analysis summary sheets are included as APPENDIX C.

TABLE 3
SIGNALIZED INTERSECTION CAPACITY ANALYSIS SUMMARY
NORTH ROAD (HIGHWAY 101) AT REED ROAD

Intersection	Time of	ne of	Performance	Eastbound			Westbound			Northbound			Southbound			1.00	N-4
Intersection	Day	Scenario	Measure	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	LUS	Notes
			Volumes	51	18	40	30	27	0	14	89	19	4	148	133		
		2023 Base	V/C		0.43		0.23		0.16		0.37			А	Optimized signal timing.		
			95% Queue (m)		10.6			8.3			9.3			16.8			5
			Volumes	56	20	46	34	30	0	16	108	24	4	170	146		
		2028 Base	V/C		0.46			0.26			0.20			0.42		А	Optimized signal timing
			95% Queue (m)		11.4			9.1			11.7			20.9			-
	Weekday		Volumes	56	20	49	36	30	0	24	115	26	4	178	146		
	Morning	2028 Base + Site	V/C		0.47			0.27			0.23			0.43		А	Optimized signal timing
	Peak Hour	eak Hour	95% Queue (m)		11.5			9.3			13.4			22.0			
			Volumes	61	22	50	37	32	0	18	117	26	5	185	160		
		2033 Base	V/C		0.49			0.28			0.23			0.47		А	Optimized signal timing
			95% Queue (m)		12.2			9.6			13.4			25.1			
			Volumes	61	22	53	39	32	0	26	124	28	5	193	160		Optimized signal timing
		2033 Base + Site	V/C		0.53			0.32			0.24			0.45		А	
North Rd/Hwy 101			95% Queue (m)		14.4			11.5			15.3			26.9			
(E/W)		2023 Base	Volumes	142	30	39	27	41	1	46	162	28	5	203	271		
			V/C		0.74			0.22			0.36			0.61		В	Optimized signal timing
			95% Queue (m)		37.6			14.0			27.1			47.1			
			Volumes	156	33	46	31	45	1	54	188	32	6	237	298		
		2028 Base	V/C		0.80			0.25			0.43			0.70		В	Optimized signal timing
			95% Queue (m)		43.5			15.7			31.1			57.2			
	Weekday	0000 B	Volumes	156	33	52	32	45	1	62	195	33	6	250	298		
	Afternoon	2028 Base + Site	V/C		0.80			0.25			0.47			0.72		В	Uptimized signal timing
	Peak Hour		95% Queue (m)		44.5			15.8			33.7			61.1			
			Volumes	170	36	50	33	49	1	58	204	35	6	258	325		
		2033 Base	V/C		0.83			0.25			0.48			0.78		В	Uptimized signal timing
			95% Queue (m)		48.8			16.4			35.2			69.5			
		2022 Bass 1	Volumes	170	36	56	34	49	1	66	211	36	6	271	325		On the interval
		Site	V/C		0.83			0.25			0.53			0.81		С	timing
			95% Queue (m)		48.2			16.4			39.5			76.2			

ntersection approaching capacity (LOS 'D' or 'E'); or approach demand near capacity (v/c 0.85 to 0.99) Intersection equals or exceeds capacity (LOS 'F); or high approach demand over capacity (v(vc => 1.0) 95% Queue length exceeds the capacity of existing storage bay.

TABLE 4SIGNALIZED INTERSECTION CAPACITY ANALYSIS SUMMARYNORTH ROAD/SCHOOL ROAD AT GIBSONS WAY (HIGHWAY 101)

Intersection	Time of	Scopario	Performance	E	astbour	ıd	w	estbour	nd	No	orthbou	nd	d Southbou		nd		
	Day	Scenario	Measure	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	Left	Thru	Right	LOS	Notes
			Volumes	120	78	147	10	126	9	150	41	3	16	63	197		
		2023 Base	V/C	0.42	0.	45	0.07	0.50		0.64		0.18		0.44	в	Optimized signal timing.	
			95% Queue (m)	15.4	11	.8	3.8	24	1.6		37.1		14	4.0	6.2		5
			Volumes	146	96	179	11	144	10	171	45	3	18	69	227		
		2028 Base	V/C	0.50	0.	50	0.08	0.	57		0.79		0.	21	0.50	В	Optimized signal timing
			95% Queue (m)	18.5	15	5.4	4.0	27	7.7		51.3		15	5.9	6.3		-
	Weekday	0000 D	Volumes	156	96	179	11	144	14	171	50	3	23	80	249		
	Morning	2028 Base + Site	V/C	0.59	0.	51	0.08	0.	62		0.73		0.	23	0.52	В	Optimized signal timing
	Peak Hour		95% Queue (m)	22.9	20).9	4.3	31	1.4		45.8		18	3.1	5.7		
			Volumes	158	104	193	12	156	11	186	49	4	19	76	246		
North Rd/School Rd		2033 Base	V/C	0.60	0.	58	0.09	0.	64		0.79		0.	21	0.51	В	Optimized signal timing
			95% Queue (m)	23.2	24	.2	4.5	33	3.4		56.1		16	6.7	5.7		
		2033 Base + Site	Volumes	168	104	193	12	156	15	186	54	4	24	87	268		
			V/C	0.65	0.	58	0.08	0.	65		0.81		0.	25	0.54 B		Optimized signal timing
			95% Queue (m)	24.8	24	1.4	4.6	34	1.1		58.2		19	9.1	5.6		
			Volumes	9	181	205	11	165	33	184	45	6	16	71	280		Outlining distance
		2023 Base 2028 Base	V/C	0.78	0.	69	0.08	0.	65		0.83		0.	20	0.58	С	Optimized signal Optimized signal timing. EBLT, NBLT/TH/RT are near
(N/S) and Gibsons			95% Queue (m)	30.7	41	.7	4.1	35	5.2		59.9	1	16	6.1	8.8		
Way/Hwy 101 (E/W)			Volumes	266	209	238	12	191	36	214	50	7	18	78	326	326	
. ,			V/C	0.93	0.	80	0.09	0.	76		0.95		0.	22	0.64	С	
			95% Queue (m)	50.3	61	.8	4.7	45	5.8		75.2		17	7.9	8.8		capacity
		2028 Base +	Volumes	283	209	238	12	191	42	214	56	7	23	85	340		Optimized signal
		2028 Base + Site	V/C	0.96	0.	79	0.09	0.	81		0.97		0.	24	0.67	С	NBLT/TH/RT are near
			95% Queue (m)	57.8	67	7.7	5.3	51	1.8		80.6	r	20).8	8.7		capacity
	Weekday		Volumes	289	227	258	13	207	40	233	54	7	19	85	354		Optimized signal timing. EBLT,
	Afternoon Reak Hour	2033 Base	V/C	0.99	0.	88	0.12	0.	92		1.02		0.	22	0.69	D	EBTH/RT, WBTH/RT are near capacity, NB
	I Cak Hour		95% Queue (m)	74.1	95	5.6	6.4	74	1.7		93.9	r	21	1.1	8.2		is over capacity.
		2033 Base +	Volumes	306	227	258	13	207	46	233	60	7	24	92	368		Optimized signal timing. EBLT,
		Site	V/C	0.99	0.	85	0.11	0.	93		1.08		0.	26	0.72	D	EBTH/RT, WBTH/RT are near capacity, NB
			95% Queue (m)	78.1	91	.6	6.4	77	7.6		99.5	1	24	1.4	8.4		is over capacity.
		2033 Base	Volumes	289	227	258	13	207	40	233	54	7	19	85	354		Optimized signal
		(NBLT)	V/C	0.92	0.	84	0.11	0.	87	0.93	0.	13	0.	23	0.70	С	WBTH/RT, NBLT are
			95% Queue (m)	62.4	8	.3	6.0	66	6.2	71.2	12	2.6	21	1.1	8.7		near capacity.
		2033 Base +	Volumes	306	227	258	13	207	46	233	60	7	24	92	368	_	Optimized signal timing. EBLT.
		Site (NBLT)	V/C	0.99	0.	82	0.10	0.	85	0.95	0.	15	0.	27	0.71	С	WBTH/RT, NBLT are
	la ta sa a di a sa a		95% Queue (m)	65.8	74	1.4	5.7	62	2.4	69.7	11	3.3	22	2.9	9.0		noar oapaolty.

Intersection approaching capacity (LOS 'D' or 'E'); or approach demand near capacity (v/c 0.85 to 0.99) Intersection equals or exceeds capacity (LOS 'F'); or high approach demand over capacity (v/c => 1.0)

95% Queue length exceeds the capacity of existing storage bay.

Based on the capacity analyses summarized by **TABLE 3** and **TABLE 4**, the following observations can be made:

North Road/Highway 101(N/S) & Reed Road (E/W)

- This signalized intersection currently operates at an overall level of service LOS A (Excellent) and LOS B (Very Good) with optimized signal timing during the Friday AM and PM peak hours, respectively. All movements are under capacity during both peak hours.
- For the year 2028 and 2033 future base scenario with optimized signal timing, the overall level of service is LOS A (Excellent) and LOS B (Very Good) during the Friday AM and PM peak hours, respectively. All movements are under capacity during both peak hours.
- Addition of site traffic to the 2028 future base traffic scenario results in no change to the overall intersection level of service. The overall intersection level of service is LOS A (Excellent) and LOS B (Very Good) during the Friday AM and PM peak hours, respectively. All movements are under capacity during both peak hours.
- Of note, the addition of site traffic in 2028 represents a 4.6% (30 vehicles) increase in the Friday AM peak hour intersection volumes and a 3.2% (36 vehicles) increase in the Friday PM peak hour intersection volumes. From a traffic engineering perspective, this increase in traffic volume is not considered to be significant.
- For the year 2033 base + site traffic scenario i.e. 5 years post build-out, the overall intersection level of service is LOS A (Excellent) for the Friday AM peak hour and LOS C (Good) for the Friday PM peak hour. All movements are under capacity during both peak hours.

North Road/School Road (N/S) & Gibsons Way/Highway 101(E/W)

- This signalized intersection currently operates at an overall level of service LOS B (Very Good) and LOS C (Good) with optimized signal timing during the Friday AM and PM peak hours, respectively. All movements are under capacity during both peak hours.
- For the year 2028 future base scenario with optimized signal timing, the overall level of service is LOS B (Very Good) and LOS C (Good) during the Friday AM and PM peak hours, respectively. All movements are under capacity during the weekday AM peak hour. However, the eastbound left-turn and the northbound movements are approaching capacity during the Friday PM peak hour.
- For the year 2033 future base scenario with optimized signal timing, the overall level service is LOS B (Very Good) during the Friday AM peak hour and LOS D (Fair) during the Friday PM peak hour. All movements are under capacity during the weekday AM peak hour. However, the eastbound and the westbound through/right-turn movements are approaching capacity, and the northbound movements are over capacity during the Friday PM peak hour.

- Addition of site traffic to the 2028 future base traffic scenario results in no change to the overall intersection level of service. The overall intersection level of service is LOS B (Very Good) and LOS C (Good) during Friday AM and PM peak hours, respectively. All movements are under capacity during the weekday AM peak hour. However, the eastbound left-turn and the northbound movements are approaching capacity during the Friday PM peak hour.
- Of note, the addition of site traffic in 2028 represents a 5.1% (57 vehicles) increase in the Friday AM peak hour intersection volumes and 3.3% (55 vehicles) increase in Friday PM peak hour intersection volumes.
- For the year 2033 future base + site traffic scenario i.e. 5 years post build-out, the
 overall intersection level of service is LOS B (Very Good) during the Friday AM
 peak hour and LOS D (Fair) during the Friday PM peak hour. All movements are
 under capacity during the weekday AM peak hour. However, the eastbound and
 the westbound through/right-turn movements are approaching capacity, and the
 northbound movements are over capacity during the Friday PM peak hour.
- By adding a northbound left-turn lane, the overall level of service is improved from LOS D (Fair) to LOS C (Good) in the 2033 future base and 2033 future base+site scenarios during the Friday PM peak hour. The eastbound left-turn, the westbound through/right-turn, and northbound left-turn movements are approaching capacity.

6.0 PARKING ANALYSIS

6.1 Off-Street Vehicle Parking

With reference to the Town of Gibsons *Zoning Bylaw No. 1065, Part 6 – Off-Street Vehicle and Bicycle Parking and Loading*, the off-street vehicle parking space requirement is 178 spaces, as summarized by **TABLE 5**.

TABLE 5 OFF-STREET VEHICLE PARKING SPACE EQUIREMENT (BYLAW RATE)

USE	RATE	SCOPE	BY-LAW REQUIRED	PROVIDED
Daycare	1 per 45 m² (484.0 ft²)	3,637 ft ²	8	8
Residential	1.50 per dwelling unit	124	186*	145
	TOTAL		194	153

* Includes 28 Visitor Spaces i.e. 15%

The development is proposing 153 parking spaces. The parking space supply is therefore deficient by forty-one spaces.

6.2 Alternate Parking Rate Rationale

Metro Vancouver's *Regional Parking Study 2018* was an update to the *Apartment Parking Study 2012*, which was the first regional study of apartment parking supply and demand in Metro Vancouver. The *Regional Parking Study 2018* collected data for 73 apartment sites across the region during fall/winter 2017 and comprises three components: Parking Facility Survey, Street Parking Survey and Household Survey. The key findings of the *Regional Parking Study 2018* were consistent with those in the 2012 Study, with some new insights about street parking. The key regional findings were as follows:

- a. The Regional Parking Study found that apartment parking supply exceeds use across the region for both rental and strata buildings, with parking supply exceeding use by 42% for strata apartment buildings and 35% for market rental apartment buildings.
- b. The overcapacity rate is similar for mixed tenure and mixed rental apartment buildings, with supply over demand by 41%.
- c. Smaller strata or market rental units with less than 800 ft² of living area, tend to have at most one parked vehicle per unit.
- d. Market rental units that are even smaller i.e. less than 600 ft², generally have the largest oversupply of parking.

e. For market rental sites, parking utilization near transit (bus or SkyTrain) ranges 0.35 – 0.72, compared to 0.99 for sites further away from the FTN.

Municipalities have reacted to the Metro Vancouver study by reviewing and updating their off-street parking rates. In the City of North Vancouver for example, the previous off-street parking rate for apartments was 0.75 spaces per unit and this was reduced to 0.60 spaces per unit in the most recent update to their zoning bylaw.

Some municipalities have taken a completely different approach to their zoning bylaw offstreet parking requirements by removing the minimum requirements all together and permitting applicants to create custom parking strategies for each development with supporting technical rationale and transportation demand management.

CTS is proposing application of a 0.75 parking space per unit rate for the rental units given the findings of the Metro Vancouver *Regional Parking Study 2018*, the location of the site in Upper Gibsons and the proximity to nearby transit including bus Route 90 linking Sechelt with Gibsons and the Langdale Ferry Terminal. **TABLE 6** summarizes the off-street vehicle parking space requirement with the proposed parking rate.

U	SE	RATE	SCOPE	METRO REQUIRED	PROVIDED
Day	rcare	1 per 45 m ² (484.0 ft ²)	3,637 ft ²	8	8
Polow Market Poptal	1 &2 bedroom	0.75 per dwelling unit	19	14	
Below Market Kentar	3 bedroom + lockoff suite	1.5 per dwelling unit	4	6	120
Market Rental	1, 2 & 3 bedroom	0.75 per dwelling unit	77	58	130
Market Ownership	1, 2 & 3 bedroom	1.5 per dwelling unit	24	36	
Vis	itor	0.1 per dwelling unit	124	12	12
Car S	Share				3
		TOTAL		134	153

 TABLE 6

 OFF-STREET VEHICLE PARKING SPACES REQUIREMENT (METRO RATE)

The development is proposing 153 parking spaces including twelve visitor spaces, eight daycare spaces and three car share spaces. The parking space supply exceeds the parking space requirement (Metro) by nineteen spaces.

6.3 Other Parking Measures

The Town of Gibsons *Zoning Bylaw No. 1065, Part 6 – Off-Street Vehicle and Bicycle Parking and Loading, Section 6.5,* allows for a parking space reduction of three spaces for each shared vehicle space and shared vehicle. Given three shared vehicle spaces

and shared vehicles are proposed, a reduction of nine parking spaces is possible reducing the Bylaw parking space requirement from 185 spaces.

Additionally, the Town of Gibsons *Zoning Bylaw No. 1065, Part 6 – Off-Street Vehicle and Bicycle Parking and Loading, Section 6.5,* allows for the sharing of parking space between off-setting uses. Given the peak parking period for the daycare use i.e. weekday daytime, is offset by the peak parking period for the visitor use i.e. weekday evenings and weekends, a further reduction of eight parking spaces is possible reducing the Bylaw parking space requirement from to 177 spaces.

6.4 Tandem Parking

Eighteen parking spaces are proposed to be tandem spaces. Given an expectation of an excess of nineteen parking spaces based on the parking space requirement (Metro), each tandem parking space could potentially function as a single parking space.

That said, for those residential units having a parking rate of 1.5 i.e. rental units having 3+ bedrooms and market units, it is reasonable to assume that some of the units might require just one parking space and some might require two parking spaces. Hence, those requiring two parking spaces would be assigned one of the tandem parking spaces.

6.5 Off-Street Bicycle Parking

With reference to the *Town of Gibsons Zoning Bylaws No. 1065, Part 6 – Off-Street Vehicle and Bicycle Parking and Loading*, the off-street bicycle parking space requirement for the proposed mixed-use development is summarized by **TABLE 7**.

U	SE	RATE	SCOPE	BY-LAW REQUIRED	PROVIDED			
(loss 1 (long Torm)	Daycare	0.27 spaces per $100m^2$ ($1076.4ft^2$) of GFA	3,637 ft ²	1	1			
Class 1 (Long-Term)	Mid-Rise Codominiums	1.25 spaces per dwelling unit	124	155	192			
Class 2 (Short Torm)	Daycare	0.40 spaces per 100m ² (1076.4ft ²) of GFA	3,637 ft ²	1				
Class 2 (Short-Term)	Mid-Rise Codominiums)	124	25	24				
	TOTAL CLASS 1 (LONG-TERM) BICYCLE PARKING SPACE							
	TOTAL CLASS 2 (SHOP	RT-TERM) BICYCLE PARKING SPACE		26	24			

TABLE 7 OFF-STREET BICYCLE PARKING REQUIREMENT

From **TABLE 7**, the mixed-use development proposes 193 long-term bicycle parking spaces and twenty-four short-term spaces. The proposed long-term bicycle parking space provision exceeds the Bylaw requirement, whereas the short-term bicycle parking space provision is deficient by two spaces.
6.6 Loading

With reference to the *Town of Gibsons Zoning Bylaws No. 1065, Part 6 – Off-Street Vehicle and Bicycle Parking and Loading*, one loading space is required for the commercial use.

The mixed-use development is currently proposing loading on-street, from a designated loading bay on Hillcrest Road. See **SECTION 7**, **FIGURE 16**.

6.7 Garbage and Recycling

Garbage/recycling collection is also proposed to be on-street, from a designated loading bay on Hillcrest Road adjacent to a staging area. See **SECTION 7**, **FIGURE 17**.

On garbage/recycling days the totes will be wheeled from the storage area on Parking Level 1 to the staging area adjacent to Hillcrest Road. Upon arrival of the service provider, the totes will be lined up curbside, and tipped.

7.0 SWEPT PATH

CTS undertook swept path analysis for the proposed mixed-use development with reference to the site plan included as **APPENDIX A**.

AutoTURN 10.2 was used for the analysis, with a front load garbage truck and a Medium Single Unit (MSU) truck representing a moving or delivery truck, and a side load garbage truck, as the design vehicles.

FIGURE 16 and **FIGURE 17** illustrate the swept path analyses for the and MSU truck and front load garbage truck.

FIGURE 15 MSU TRUCK SWEPT PATH

FIGURE 16 FRONT LOAD GARBAGE TRUCK SWEPT PATH

8.0 CONCLUSIONS

- The proposed development would consist of 124 residential units and 3,637 ft² (337.9 m²) of daycare located at 718 North Road, in the Town of Gibsons. The estimated year of completion is 2028.
- 2) CTS conducted intersection traffic turning movement counts on Friday, November 2, 2023, to document existing base traffic volume counts within the study area. On the day of the traffic volume counts, the pavement on the roads was dry, all public schools in Gibsons were open and there was no weather event that could have adversely affected traffic patterns.
- 3) The proposed mixed-use development is estimated to conservatively generate up to eighty-seven vehicle trips during the weekday AM peak hour i.e. thirty-two inbound and fifty-five outbound, and up to ninety vehicle trips during the weekday PM peak hour i.e. forty-nine inbound and forty-one inbound. The projected volumes of new site traffic represent on average one vehicle movement every 0.7 minutes during the Friday AM and PM peak hours.
- 4) It is noted the Ministry of Transportation & Infrastructure's warrant for requiring a traffic impact study for a proposed development is 100 or more new vehicle trips during the design hour. Therefore, the proposed development does not technically meet the Provincial requirement for a formal traffic impact study at only 91% of the threshold.
- 5) For the year 2028, traffic generated by the following nearby new developments will be included as the base traffic volumes:
 - 826 Gibsons Way, and
 - 835 Gibsons Way.
- 6) For the optimized signal timing and operation, the signalized intersection of Reed Road and North Road (Highway 101) is projected to operate at LOS A (Excellent) during Friday AM peak hour and LOS C (Good) or better during Friday PM peak hour for the year 2023 base, 2028 base, 2033 base, 2028 base+site i.e. buildout, and 2033 base+site i.e. 5 yrs. post buildout, scenarios. Addition site traffic does not change the level of service and all movements are under capacity.
- 7) For the optimized signal timing and operation, the signalized intersection of Gibsons Way (Highway 101) and School Road is projected to operate at LOS B (Very Good) with all movements under capacity during Friday AM peak hour for all scenarios. During the Friday PM peak hour, the intersection is projected to operate at LOS C (Good) for the 2023 base, 2028 base, and 2028 base+site scenarios. However, the eastbound left-turn and the northbound movements are near capacity in the 2028 base scenario. The overall level of service is LOS D (Fair) during Friday PM peak hour in the 2033 base and 2033 base+site scenarios. The eastbound movements and the westbound through/right-turn are near capacity while the northbound movements are

over capacity in the 2033 and 2033 base+site base scenarios.

By adding the left-turn lane on the north, the overall LOS is improved from LOS D to LOS C for the Friday PM peak hour in the 2033 and 2033 base+site base scenarios.

- 8) With reference to the Town of Gibsons *Zoning Bylaws No. 1065*, 194 parking spaces are required. The proposed mixed-use development proposes 153 parking spaces, giving a deficit of forty-one spaces.
- 9) There has been an increasing and well documented trend towards reducing and/or eliminating minimum parking space requirements in urban centres in Western Canada, in direct response to changes in travel behaviour and transport mode of choice. This trend is particularly evident in the rental housing market.
- 10) Metro Vancouver's 2018 Regional Parking Study was an update to the 2012 Apartment Parking Study, which was the first regional study of apartment parking supply and demand in Metro Vancouver. The Regional Parking Study found that apartment parking supply exceeds use across the region for both rental and strata buildings, with parking supply exceeding use by 42% for strata apartment buildings and 35% for market rental apartment buildings. Furthermore, smaller strata or market rental units with less than 800 sq. ft. of living area tend to have at most one parked vehicle per unit. Market rental units that are even smaller with less than 600 sq. ft. have the largest oversupply of parking.
- 11) The proposed parking rate for the rental housing of 0.75 spaces per unit is technically justified given the location of the site in Upper Gibsons and the proximity to nearby transit including the express bus Route 90 linking Sechelt with Gibsons and the Langdale Ferry Terminal.

Application of the Metro parking rate to the rental units gives an excess of on-site parking spaces.

- 12) Further, application of the provisions of the Bylaw which allow for a shared vehicle space/shared vehicle and shared parking between offset uses i.e. daycare and visitor, allows for an additional reduction in the parking space requirement, of nineteen spaces.
- 13) Following on discussions with the Town of Gibsons, loading and garbage/recycling is proposed to be within a layby on Hillcrest Road. The swept path for a delivery truck and a garbage/recycling truck, were acceptable.
- 14) Per the Town of Gibsons Zoning Bylaws No. 1065, one hundred fifty-six (156) long-term bicycle parking spaces and twenty-six (26) short-term bicycle parking spaces are required. The proposed long-term bicycle parking space provision is met, however the short-term bicycle parking space provision is deficient by two spaces.

9.0 **RECOMMENDATIONS**

Based on the preceding, the following is recommended:

- 1. That the Town of Gibsons and the Ministry of Transportation & Infrastructure accept the data, analyses and conclusions as documented by this study.
- 2. That the Town of Gibsons supports an off-street parking space rate of 0.75 spaces per unit, for rental.
- 3. That the Town of Gibsons supports loading and garbage/recycling, from Hillcrest Road.

Please call the undersigned should there be questions and/or comments related to this Final Traffic Impact Study.

Yours truly,

CREATIVE TRANSPORTATION SOLUTIONS LTD. PERMIT TO PRACTICE NO. 1000697

Brent A. Dozzi, P. Eng. Senior Traffic Engineer & Project Manager

APPENDICES

Appendix A Site Plan

718 North Road, Gibsons, BC

Issued for Development permit:

2024-MM-DD

A001 COVER PAGE & DRAWING LIST A002 STATISTICS AND CONTEXT A100 SITE PLAN A101 PARKING P1 A102 LEVEL 1 A103 LEVEL 2 A104 LEVEL 3 A105 LEVEL 4	SHEET NUMBER	SHEET NAME
A002 STATISTICS AND CONTEXT A100 SITE PLAN A101 PARKING P1 A102 LEVEL 1 A103 LEVEL 2 A104 LEVEL 3 A105 LEVEL 4	A001	COVER PAGE & DRAWING LIST
A100 SITE PLAN A101 PARKING P1 A102 LEVEL 1 A103 LEVEL 2 A104 LEVEL 3 A105 LEVEL 4	A002	STATISTICS AND CONTEXT
A101 PARKING P1 A102 LEVEL 1 A103 LEVEL 2 A104 LEVEL 3 A105 LEVEL 4	A100	SITE PLAN
A102 LEVEL 1 A103 LEVEL 2 A104 LEVEL 3 A105 LEVEL 4	A101	PARKING P1
A103 LEVEL 2 A104 LEVEL 3 A105 LEVEL 4	A102	LEVEL 1
A104 LEVEL 3 A105 LEVEL 4	A103	LEVEL 2
A105 LEVEL 4	A104	LEVEL 3
	A105	LEVEL 4
A106 LEVEL 5	A106	LEVEL 5
A107 LEVEL 6	A107	LEVEL 6
A108 ROOF PLAN	A108	ROOF PLAN
A200 ELEVATIONS	A200	ELEVATIONS
A201 ELEVATIONS	A201	ELEVATIONS
A202 ELEVATIONS	A202	ELEVATIONS

SHEET NUMBER	SHEET NAME
A300	SECTIONS
A301	SECTIONS
A302	SECTIONS
A400	AREA PLAN LEVEL 1
A401	AREA PLAN LEVEL 2
A402	AREA PLAN LEVEL 3
A403	AREA PLAN LEVEL 4
A404	AREA PLAN LEVEL 5
A405	AREA PLAN LEVEL 6
A700	RENDERED VIEWS
A701	RENDERED VIEWS
A702	RENDERED VIEWS
A900	MATERIAL SAMPLE BOARD
Grand total: 27	

D:\001

Client

GeoPacific Consulting Ltt 1779 West 75th Aveune Vancouver, BC V6P 6P2 Contact: Adam Zywotkiewic Email: reception@geopacifit Tel: 604.439.0922

Creative Transportation Sol Unit 101A - 1952 Kingsway Av Port Coquitlam, BC V3C 6C2 Contact: Brent Dozzi Email: info@cts-bc.com Tel: 250.404.9094

Traffic

Structural

Timber Engineering Inc. 400-19 East 5th Avenue Vancouver, BC V5T 1G7 Contact: Robert Malczyk Email: robert.malczyk@tin Cell: 604 839 0214

	A	R	сн	ΙT	E	С	15	
1645 West 5th Avenue Vancouver, BC V6J 1N5								ANNENMA
Tel: (604) 872-2595Fax: (604) 872-2505 Email: office@AMArchitects.com								IN MARCHAND
Projec 2306 Owne 718 N Drawi COV LIST Projec	r: r: /EF ct S elo	Roa R P/ tatus pm	ad, G AGE :: ent SUB	ibson E & I Per MISS	■ s, B(DR/ mit		ING	i
Deve	ite		000		\sim			
		D)		Desc		tion		
		Date	RE		ON	scrip	btion	

718 North Road, Gibsons, BC

STATISTICS:

LEGAL DESCRIPTION Lot 'K' of Lot 1 Bk 7 DL688 NWD Plan 23077. Town of Gibsons

CIVIC ADDRESS 718 North Road, Gibsons, BC

EXISTING ZONING

Zone: Upper Gibsons Commercial District 1 (C-1) Land Use Designation: Medium Density Residential

PROPOSED USE Mixed-Use - Residential & Daycare

SURVEY INFORMATION

Original survey by Bennett Surveys on May 14, 2019. Updated re-inspected survey by Bennett Surveys on October 20, 2023.

DEFINITIONS (PER ZONING BYLAW NO. 1065, 2007)

Gross Floor Area: means the sum of the horizontal areas of each storey of a building measured from the interior faces of the exterior walls providing that in the case of a wall containing windows, the glazing line of the windows may be used. The measurement is exclusive of basement areas used only for storage or service to the building, unfinished attic space, attached garages, carports, breezeways, porches, balconies, exit stairways, corridors, and terraces. In the case of apartments, public corridors, common amenity spaces, and building mechanical systems are also excluded. In the case of congregate housing, communal dining and kitchen facilities are excluded.

Floor Space Ratio: means a ratio calculated by gross floor area of buildings divided by the lot area upon which the buildings are located

Lot Coverage: means the percentage of lot area covered by the vertical projection onto the horizontal plane of impermeable surfaces on the lot such as principal and accessory buildings and structures, including roof overhangs and covered entries, porches and decks, and other features such as swimming pools, open decks, walkways, driveways, parking, loading and storage spaces, where such features are constructed or paved with impermeable surfaces or substrates.

	REQUIREMENT	PROPOSED
LOT AREA	≥235 m²	5,240 m ²
LOT WIDTH	≥7.5 m	81.5 m
LOT DEPTH	≥30.0 m	64.3m
LOT COVERAGE	≤80%	3,377 m² (64%)
GROSS FLOOR AREA (GFA)	N/A	8,297 m ²
FLOOR SPACE RATIO (FSR)	N/A	1.58
UNIT COUNT*	N/A	124
LEVEL 1	N/A	26
LEVEL 2	N/A	21
LEVEL 3	N/A	21
LEVEL 4	N/A	21
LEVEL 5	N/A	21
LEVEL 6	N/A	14
BUILDING HEIGHT	≤12.0 m	20.0 m
SETBACK – FRONT LOT LINE	≥0.00 m	0.2 m
SETBACK – SIDE (INTERIOR) EAST LOT	≥0.00 m	17.26 m
SETBACK – SIDE (EXTERIOR) WEST LOT	≥0.00 m	3.50 m
SETBACK – REAR LOT LINE	≥0.00 m	2.00 m
SETBACK – NORTH ROAD CENTRELINE	16.5 m	17.79 m

*For area plans and area schedules, see A400-A404.

GROSS FLOOR ARE	EA
Name	Area
1 BEDROOM UNIT	4203 m ²
86	4203 m ²
2 BEDROOM UNIT	586.3 m²
8	586.3 m²
2 BEDROOM UNIT + DEN	548.3 m²
8	548.3 m²
3 BEDROOM LOCK-OFF UNIT	118.1 m²
1	118.1 m²
3 BEDROOM UNIT	2434.8 m²
42	2434.8 m²
ACCESIBLE 2 BEDROOM UNIT	62 m²
1	62 m²
AMIN	6.6 m²
1	6.6 m²
DAYCARE	337.9 m²
1	337.9 m²
Grand total: 148	8297 m ²

Grand total: 148

VEHICLE	PARKING	SUMMARY

	CALCULATION	REQUIREMENT	PROPOSED
APARTMENT USE – RESIDENT*	≥1.275 per unit	≥161	117
APARTMENT USE - VISITOR*	≥0.225 per unit	≥28	28
COMMERCIAL USE (DAYCARE)	≥1.0 per 45 m²	≥8	8
MINUS: CAR SHARE REDUCTION	3 spaces per 1 shared car	-9	
MINUS: SHARED PARKING SPACES REDUCTION	25% of shared uses	-9	
TOTAL SPACES		179	153
SMALL CAR SPACES	≤30% of required spaces	≤54	50
ACCESSIBLE SPACES	0, if required Commercial spaces is ≤19	≥0	8
*Pation reflect 1 5 analog per unit with 15% allocation f	for Visitor uso		

Ratios reflect 1.5 spaces per unit with 15% allocation for Visitor use

REGULATIONS (PER ZONING BYLAW NO. 1065, 2007)

6.12 Number of Required Accessory Off-Street Parking Spaces: Apartment dwelling units: 1.5 per dwelling unit Retail, Office or Service commercial use: 1.0 per 45.0 m²

6.08 Visitor Parking: Of the parking spaces required for a townhouse or apartment use, 15% must be available for visitor use; conveniently located for visitor use; and clearly marked "VISITOR PARKING".

6.10 Parking Spaces for Physically Disabled Persons: For all commercial, industrial, entertainment, recreation and public assembly uses, parking spaces sized and marked for the exclusive use of physically disabled persons must be provided in at least the following ratio to the total number of accessory parking spaces required on the lot:

Required	Spaces	for	Disabled	Persons	

0-19	none
20-49	1
49-99	2
100 or more	2 plus one space for every fifty or portion thereof exc

6.07 Small Car Parking

Of the total required number of accessory parking spaces required on a lot, up to 30% may take the form of "small car" parking space as described in Section 6.9

6.05(2)(b) Car Share Vehicle & Parking (Parking Reduction)

The minimum vehicle parking requirement in accordance with subsection 6.12, not including visitor parking requirements in accordance with Section 6.8, shall be reduced by three parking spaces, for provision of both of the following: i. one shared vehicle in accordance with subsection 6.5(2)(a) ii. one shared vehicle parking space in accordance with subsection 6.5(2)(d)

6.05(4)(a) Shared Parking Spaces

Where the peak use of parking spaces for two or more uses on the same lot or adjacent lots occurs at different periods of time, and required parking for such use is or may be shared, the total number of parking spaces required by Section 6.12 for such uses may be reduced by no more than 25%, provided that the requirements of subsection 6.5(4)(b) are met.

6.13 Provision of Electric Vehicle Charging Infrastructure

(1) A parking area containing 10 or more parking spaces required by this Bylaw also requires one energized electrical outlet for every 10 required parking spaces, labeled for the use of electric vehicle charging and capable of providing Level 2 or higher charging for an electric vehicle, for every 10 required parking spaces.

BICYCLE PARKING SUMMARY

	CALCULATION	REQUIREMENT	PROPOSED
APARTMENT USE – CLASS 1	≥1.25 per unit	≥155	193
APARTMENT USE – CLASS 2	≥0.20 per unit	≥25	24
COMMERCIAL USE (DAYCARE) – CLASS 1	≥0.27 per 100 m ² over 100 m ²	≥1	
COMMERCIAL USE (DAYCARE) – CLASS 2	≥0.40 per 100 m ² over 100 m ²	≥1	
TOTAL SPACES		182	193* ^(217 Inc. Class 2)
* of which 148 Horizontal stalls and 45 Vertical (2	23%)		

DESIGN RATIONALE

The proposed development consists of 126 apartment units in three buildings, including two (2) five-unit buildings with three-storey units. The project is located at 718 North Road, Gibsons, BC, and is aimed at bringing much-needed affordable rental housing to Upper Gibsons. Its location is ideal for families and local workers, due to its proximity to several amenities.

Elphinstone Secondary School and Gibsons Elementary School are each just a few minutes' walk away, facilitating housing options for young families. The site is surrounded by single-family houses to the north and east, a Telus building to the south, and a BC Hydro sub-station to the west, opposite North Road. Also within walking distance are several shops and amenities, and Langdale Ferry Terminal is just a 5-minute drive away.

The area is geared for outdoor enthusiasts, close to Gibsons Ravine and Shirley Macey Park. Lower Gibsons' famous village area is a 15-minute walk away, close to Gibsons Harbour and Armours Beach.

The proposed development offers affordability and accessibility in an optimal location, delivering livability for future tenants and addressing Gibsons' urgent housing needs.

eeding one hundred

ARC	нітеств
1645 West 5th Avenue Vancouver, BC V6J 1N5	ANKENMA
Tel: (604) 872-2595Fax: (604) 872-2505 Email: office@AMArchitects.com	N MARCHAND
Project: 2306 Owner: 718 North Road, O Drawing: STATISTICS Project Status: Developmen	- Gibsons, BC AND CONTEXT t Permit
Date (YYYY-MM-DD)	Description
R No. Date	EVISION Description
All Drawings in this set to be re- or discrepancies to be reported Contractors are reaponsible requirements of the a © Copyright Ankenman M	ad in conjunction with each other. Any errors of the Architect before commercing work, and the second second second second second second proprietile Bufforg Code Authority, archand Architects. All rights reserved.
Scale:	DWG. NO:

16² Var				Þ
15 West 5t ncouver, B				NNE
h Avenue C V6J 1N				
5 П				AN
nail: office				MAN
el: (604) @amarchit				С Н
872-2595 ects.com				PNU
	F /			
	NORT	\rightarrow		
	T			
Proje 2306	ct:			
Owne	er:			
718 N	lorth Road, Git	osons, BC		
Drawi	ng:			
OUTE				
SITE Proje	E PLAN ct Status:			
SITE Proje Dev	E PLAN ct Status: elopment SUBI	Permit MISSION	1	
SITE Proje Dev	E PLAN ct Status: elopment SUBI	Permit MISSION Descripti	l on	
Proje Dev	E PLAN ct Status: elopment SUB ate	Permit MISSION Descripti	l on	
SITE Proje Dev	E PLAN ct Status: elopment SUBI ate	Permit MISSION Descripti	l on	
	E PLAN ct Status: elopment SUBI ate	Permit MISSION Descripti	l on	
	E PLAN ct Status: elopment SUBI ate ////////////////////////////////////	Permit MISSION Descripti	l on	
Proje Dev Dav	E PLAN ct Status: elopment SUB ate CAMPOD	Permit MISSION Descripti	l on	
No.	E PLAN et Status: elopment SUBI ate (MMF-DD) REVI: Date	Permit MISSION Descripti	i on 	
No.	E PLAN ct Status: elopment SUB ate CAMP OD REVI: Date	Permit MISSION Descripti	tion	
No.	E PLAN ct Status: elopment SUBI ate (MMACO)	Permit MISSION Descripti	l on tion	
No.	E PLAN ct Status: elopment SUBI ate (MM-DD) REVI: Date	Permit MISSION Descripti	tion	
No.	E PLAN et Status: elopment SUB ate cash cop	Permit MISSION Descripti SION Descrip	tion	
No.	E PLAN et Status: elopment SUB ate suB ate comparison suB ate	Permit MISSION Descripti SION Descrip	tion	
No.	E PLAN ct Status: elopment SUB ate ctube ctube ctube sub	Permit MISSION Descripti	tion	
No.	E PLAN et Status: elopment SUB ate control sub att ate control sub att ate control sub att ate control sub ate	Permit MISSION Descripti SION Descrip	tion	
No.	E PLAN et Status: elopment SUB ate suB	Permit MISSION Descripti SION Descrip	tion	
No.	E PLAN ct Status: elopment SUB ate SU	Permit MISSION Descripti	tion be read in Any error rted to the ror orbit	
No.	E PLAN et Status: elopment SUB ate sUB att sUB	Permit MISSION Descripti SION Descrip	tion be read in Any error rted to the ropriate rifty. larchand	
No.	E PLAN ct Status: elopment SUB ate sUB ate ctube	Permit MISSION Descripti SION Descrip Descrip	tion be read in Any eror to the ropriate rity. darchand served.	
No.	E PLAN et Status: elopment SUB ate sUB att sUB	Permit MISSION Descripti SION Descrip Descrip	tion be read in Any error ing work, a to ensure d to the ropriate Archand served. NO:	

1645 West 5th Avenue Vancouver, BC V6J 1N5							
Iel: (604) 872-2595Fax: (604) 872-2505 Email: office@AMArchitects.com							
-	IORTH	()			
Projec 2306 Owne 718 N	r: orth R	load,	Gibs	ons, E	3C		
Projec 2306 Owne 718 N Drawi PAR Projec	r: orth R ng: KIN(ct Stat elop)	G F tus: mer	Gibs 11 JBMI	ons, E ermi SSIC	3C t DN		
Projec 2306 Ownee 718 N Drawie PAR Projec Deve	r: ng: KIN (ct Stal elop (tte	doad, G F tus: mer SL	Gibs P1 JBMI De	oons, E ermi SSIC	3C t DN btion	<u> </u>	
Projectoria National Action of the second se	r: ng: KIN(kte elop	G F tus: mer	Gibs 91 JBMI De	ermi SSIC	3C t DN bition		
Projection 2306 Ownee 7118 N Projection Drawin Projection Drawin Drawin Projection Drawin Dra	r: ng: KIN(Ct Stat Plot NMA-DD)	G F tus: mer SL	Gibs 1 1 De	ermi SSIC	t DN btion		
Projection	r: ng: KIN4 et Stat ate ate Da	G P tus: mer SL	Gibs P1 JBMI De	ermi SSIC scrip	t DN btion	ptior	
Projec 2306 Ownee 718 N Projec Dev Dev Dev No.	r: r: ng: KIN4 ct Stata elopi tte Da	G P tus: mer SL	Gibs	ermi SSIC scrip	t DN btion	ptior	
Projection 2306 Ownee Projection 2007 Projection 2007 Projecti	ct Stat r: r: r: r: r: r: r: r: r: r:	G F tus: SL	Gibs	ermi SSIC scrip	t DN Detion	ptior	
Projet 2306 Ownee Prawi PAR Projet Devi Devi No.	tt: r: ng: KINN tt Stat eloppi tte Da Da page n hala matches are requirements	Coad, G F tus: mer SL	Gibs	SION	t DN bition	ptior)

Appendix B Turning Movement Count Summary Sheets

Friday, November 24, 2023

Vehicle Classification Summary

Project: Municipality: Weather: #9090: 718 North Road TIS Town of Gibsons Sunny

			Ve	hicle Classificat	ion	
Time Period	Entering Intersection	Passenger Cars	Heavy Vehicles (3 or more axles)			Total
Morning	Volume	1,213	46			1,259
(07:00 - 09:30)	%	96.3%	3.7%			100.0%
	Volume					
	%					
Afternoon	Volume	2,740	49			2,789
(14:30 - 18:00)	%	98.2%	1.8%			100.0%
Total	Volume	3,953	95			4,048
(6 Hours)	%	97.7%	2.3%			100.0%

Hwy 101 & Reed Rd Friday, November 24, 2023

Project: #9090: 718 North Road TIS

Weather: Sunny Vehicle Class: All Motorized Vehicles

Municipality: Town of Gibsons

Morning Peak Period

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: All Motorized Vehicles **Afternoon Peak Period**

Hwy 101 & Reed Rd Friday, November 24, 2023

Morning Peak Period

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Passenger Cars

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Passenger Cars

Morning Peak Period

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Heavy Vehicles (3 or more axles)

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Heavy Vehicles (3 or more axles)

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Bicycles Hwy 101 & Reed Rd Friday, November 24, 2023

Morning Peak Period

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Bicycles

Friday, November 24, 2023

Vehicle Classification Summary

Project: Municipality: Weather: #9090: 718 North Road TIS Town of Gibsons Sunny

			Ve	hicle Classificati	ion	
Time Period	Entering Intersection	Passenger Cars	Heavy Vehicles (3 or more axles)			Total
Morning	Volume	1,761	34			1,795
(07:00 - 09:30)	%	98.1%	1.9%			100.0%
	Volume					
	%					
Afternoon	Volume	4,253	26			4,279
(14:30 - 18:00)	%	99.4%	0.6%			100.0%
Total	Volume	6,014	60			6,074
(6 Hours)	%	99.0%	1.0%			100.0%

Morning Peak Period

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: All Motorized Vehicles

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: All Motorized Vehicles

Morning Peak Period

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Passenger Cars

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Passenger Cars

Peak Hour Traf	fic by l	Mover	ent											2:3	0 PM	to	3:30 PM
Gib	isons Way				C 278	1 70 364	16	2	303	2						N)
626		225 181 205	+ ۲ ۲		Passe	nger C	ars		0	,			33 164 11				208
				School Rd		286	7	2 2 2 2 2	235 45	ر ب		Inte is F	erse lighl	ctio	n Pe ed i	ak I n <mark>YE</mark>	Hour ILLOW
Time	NOR	TH App	roach	SOU	TH App	roach	WES	ST Appr	oach	EAS	T Appr	oach	P	EDES		S E	Total
Peak Hour	16 16	70	278	184	45	- ngint 6	225	181	205	11	164	- ngint 33	N	3	vv		1,418
PHF	0.67	0.83	0.66	0.84	0.66	0.50	0.72	0.94	0.93	0.55	0.82	0.83					0.90
Peak 15 X 4	24	84 12	424	220	68 32	12 2	312	192	220	20	200	40					1,584
Survey Total	67	149	707	595	114	9	718	570	688	19	524	93					4,253
14:30	4	14	36	35	10	2	78	38	47	5	39	5					313
14:45	1	21	66	55	9	1	52	48	55	1	50	10					369
15:00	5	17	106	55	9	3	59	48	48	2	36	8					396
15:15 15:20	6 5	18 10	70 26	39	17	0	36	47 27	55 50	3	39	10 0					340
15:45	4	8	46	49	13	0	40	43	52	1	50	8					200 319
16:00	5	6	37	59	8	Ő	42	54	47	3	45	6					312
16:15	4	5	29	56	8	1	50	44	54	0	41	7					299
16:30	6	8	39	35	7	0	44	47	40	1	37	5		_			269
16:45	7	6	35	32	9	1	53	38	48	0	28	11					268
17:00	3	3 12	43 89	50 28	9	1	54 63	34 33	50 60	1	35 37	4 5					∠ŏ5 336
17:30	5	11	46	41	9	0	53	31	41	0	38	1					276
17:45	5	10	29	16	2	0	39	28	33	2	22	5					191

Morning Peak Period

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Heavy Vehicles (3 or more axles)

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Heavy Vehicles (3 or more axles)

Morning Peak Period

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Bicycles

Project: #9090: 718 North Road TIS Municipality: Town of Gibsons Weather: Sunny Vehicle Class: Bicycles

Appendix C Capacity Analysis Summary Sheets

	minao										2022	Page
1: North Rd (Hwy 1)	01) & I	Reed R	d					Tin	ning Pla	n: Frida	2023 ay AM P	eak Hr
	٦	→	7	¥	+	×.	1	1	1	1	Ļ	∢
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	51	18	40	30	27	0	14	89	19	4	148	133
Future Volume (vph)	51	18	40	30	27	0	14	89	19	4	148	133
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			1.00			1.00			0.99	
Frt		0.950						0.979			0.937	
Flt Protected		0.977			0.974			0.994			0.999	
Satd. Flow (prot)	0	1622	0	0	1719	0	0	1711	0	0	1635	0
Flt Permitted		0.812			0.833			0.949			0.997	
Satd. Flow (perm)	0	1348	0	0	1466	0	0	1634	0	0	1631	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		55						25			117	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		425.8			377.5			821.0			385.3	
Travel Time (s)		30.7	_	_	27.2			59.1	_		27.7	
Confl. Peds. (#/hr)			5	5			2		2	2		2
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Shared Lane Traffic (%)		_	_		_	_		_	_		
Lane Group Flow (vph)	0	150	0	0	78	0	0	167	0	0	390	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4		_	8			2		_	6	
Permitted Phases	4			8	0		2	0		6	•	
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase	7.0	7.0		7.0	7.0		10.0	40.0		10.0	10.0	_
Minimum Initial (s)	7.0	7.0		7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	_
Total Split (S)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
	10.0%	10.0%		10.0%	10.0%		10.0%	10.0%		10.0%	10.0%	_
Valley Time (a)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
All Ded Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (S)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Total Lost Time (s)		4.5			0.0			0.0			4.5	
		4.5			4.5			4.0			4.0	
Lead Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		J.U None	J.U None		Max	J.U Max		Max	Max	
Walk Time (s)	7.0	7.0		NONE	NULLE		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0					11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0					0	0		0	0	
Act Effet Green (s)	0	85			85		0	23.3		0	23.3	
Actuated g/C Ratio		0.0			0.3			0.62			0.62	
v/c Ratio		0.23			0.23			0.02			0.37	
Control Delay		12 1			12.8			5 1			5.3	
Oueue Delay		0.0			0.0			0.0			0.0	
Total Delay		12.1			12.8			5.1			5.3	
LOS		- 2.1 B			12.0 R			Δ			0.0 A	
Approach Delay		12.1			12.8			5.1			5.3	
					.2.0			0.1			0.0	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Synchro 11 Report Page 1

Lanes, Volumes, Tim 1: North Rd (Hwy 10	nings 1) & F	Reed R	d					Tin	ning Pla	n: Frida	2023 ay AM Pe	Base eak H
	≯	+	1	4	Ļ	•	•	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Approach LOS		В			В			А			А	
Queue Length 50th (m)		4.8			3.9			3.7			7.8	
Queue Length 95th (m)		10.6			8.3			9.3			16.8	
Internal Link Dist (m)		401.8			353.5			797.0			361.3	
Turn Bay Length (m)												
Base Capacity (vph)		675			703			1020			1053	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.22			0.11			0.16			0.37	
Intersection Summary												
Area Type: Of	ther											
Cycle Length: 45												
Actuated Cycle Length: 3	37.6											
Natural Cycle: 45												
Control Type: Semi Act-L	Jncoor	d										
Maximum v/c Ratio: 0.43												
Intersection Signal Delay	: 7.3			I	ntersect	on LOS	: A					
Intersection Capacity Util	lization	34.3%		10	CU Leve	el of Ser	vice A					
Analysis Period (min) 15												

Splits and Phases: 1: North Rd (Hwy 101) & Reed Rd

1 Ø2			
22.5 s		22.5 s	
₽ Ø6		▼ Ø8	
22.5 s		22.5 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Synchro 11 Report Page 2

Lanes, Volumes, Ti	minas										2028	Base
1: North Rd (Hwy 1	01) & I	Reed R	d					Tin	ning Pla	an: Frida	ay AM P	eak Hr
	٨	-	\mathbf{r}	¥	+	•	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			\$			\$			\$	
Traffic Volume (vph)	56	20	46	34	30	0	16	108	24	4	170	146
Future Volume (vph)	56	20	46	34	30	0	16	108	24	4	170	146
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			1.00			1.00			0.99	
Frt		0.949						0.978			0.938	
Flt Protected		0.977			0.974			0.995			0.999	
Satd. Flow (prot)	0	1620	0	0	1719	0	0	1711	0	0	1637	0
Flt Permitted		0.809			0.820			0.944			0.997	
Satd. Flow (perm)	0	1341	0	0	1443	0	0	1623	0	0	1633	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		63						26			112	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		425.8			377.5			821.0			385.3	
Travel Time (s)		30.7			27.2			59.1			27.7	
Confl. Peds. (#/hr)			5	5			2		2	2		2
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Shared Lane Traffic (%)											
Lane Group Flow (vph)	0	167	0	0	88	0	0	203	0	0	438	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (%)	50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)	18.0	18.0		18.0	18.0		18.0	18.0		18.0	18.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0					7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0					11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0					0	0		0	0	
Act Effct Green (s)		8.7			8.7			22.7			22.7	
Actuated g/C Ratio		0.23			0.23			0.61			0.61	
v/c Ratio		0.46			0.26			0.20			0.42	
Control Delay		12.2			13.0			5.5			6.2	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		12.2			13.0			5.5			6.2	
LOS		В			В			A			А	
Approach Delay		12.2			13.0			5.5			6.2	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Synchro 11 Report Page 1

	٦	-	\mathbf{i}	1	←	•	1	1	1	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Approach LOS		В			В			А			А	
Queue Length 50th (m)		5.3			4.4			4.8			9.9	
Queue Length 95th (m)		11.4			9.1			11.7			20.9	
Internal Link Dist (m)		401.8			353.5			797.0			361.3	
Turn Bay Length (m)												
Base Capacity (vph)		680			697			999			1039	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.25			0.13			0.20			0.42	
Intersection Summary												
Area Type: Ot	ther											
Cycle Length: 45												
Actuated Cycle Length: 3	37.3											
Natural Cycle: 45												
Control Type: Semi Act-L	Jncoor	t										
Maximum v/c Ratio: 0.46												
Intersection Signal Delay	: 7.8			lr Ir	ntersect	on LOS	: A					
Intersection Capacity Util	ization	37.1%		10	CU Leve	l of Serv	vice A					

Splits and Phases: 1: North Rd (Hwy 101) & Reed Rd

1 Ø2	4	04
22.5 s	22.5	is and the second s
₽ Ø6	4	 Ø8
22.5 s	22.5	s

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Synchro 11 Report Page 2
Lanes, Volumes, Ti	mings									202	8 Base	+Site
1: North Rd (Hwy 1	01) & I	Reed R	ld					Tin	ning Pla	ın: Frida	ay AM P	eak Hr
	٨	+	1	4	ţ	•	•	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			4	
Traffic Volume (vph)	56	20	49	36	30	0	24	115	26	4	178	146
Future Volume (vph)	56	20	49	36	30	0	24	115	26	4	178	146
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			1.00			1.00			0.99	
Frt		0.947						0.979			0.940	
Flt Protected		0.978			0.973			0.993			0.999	
Satd. Flow (prot)	0	1618	0	0	1717	0	0	1709	0	0	1641	0
Flt Permitted		0.812			0.815			0.917			0.997	
Satd. Flow (perm)	0	1343	0	0	1434	0	0	1578	0	0	1637	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		67						25			107	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		425.8			377.5			821.0			385.3	
Travel Time (s)		30.7			27.2			59.1			27.7	
Confl. Peds. (#/hr)			5	5			2		2	2		2
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Shared Lane Traffic (%)											
Lane Group Flow (vph)	́О	171	0	0	90	0	0	227	0	0	449	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (%)	50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)	18.0	18.0		18.0	18.0		18.0	18.0		18.0	18.0	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0					7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0					11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0					0	0		0	0	
Act Effct Green (s)		8.7			8.7			22.6			22.6	
Actuated g/C Ratio		0.23			0.23			0.61			0.61	
v/c Ratio		0.47			0.27			0.23			0.43	
Control Delay		12.0			13.0			5.8			6.4	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		12.0			13.0			5.8			6.4	
LOS		В			В			А			А	
Approach Delay		12.0			13.0			5.8			6.4	

Synchro 11 Report Page 1

Lanes, Volumes, Timings 2028 Base+Si 1: North Rd (Hwy 101) & Reed Rd Timing Plan: Friday AM Peak											+Site eak H	
	≯	†	*	4	ţ	•	◄	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Approach LOS		В			В			А			А	
Queue Length 50th (m)		5.3			4.5			5.6			10.5	
Queue Length 95th (m)		11.5			9.3			13.4			22.0	
Internal Link Dist (m)		401.8			353.5			797.0			361.3	
Turn Bay Length (m)												
Base Capacity (vph)		684			694			969			1037	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.25			0.13			0.23			0.43	
Intersection Summary												
Area Type: Of	ther											
Cycle Length: 45												
Actuated Cycle Length: 3	37.2											
Natural Cycle: 45												
Control Type: Semi Act-L	Jncoor	d										
Maximum v/c Ratio: 0.47												
Intersection Signal Delay	: 7.9			Ir	ntersect	ion LOS	5: A					
Intersection Capacity Util	lization	42.1%		10	CU Leve	el of Ser	vice A					
Analysis Period (min) 15												

Splits and Phases: 1: North Rd (Hwy 101) & Reed Rd

≪¶ø2	
22.5 s	22.5 s
₽ Ø6	▼ Ø8
22.5 s	22.5 s

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanas Valumas Ti	minac										2022	Paca
1. North Rd (Hwy 1)	01) & I	Reed R	2d					Tin	ning Pla	ın: Frida	ay AM P	eak Hr
	<u>بر المراجع</u>	-	•	4	+	•	•	t	/	4	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		44			4			44			4	
Traffic Volume (vph)	61	22	50	37	32	0	18	117	26	5	185	160
Future Volume (vph)	61	22	50	37	32	0	18	117	26	5	185	160
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			1.00			1.00			0.99	
Frt		0.950						0.978			0.938	
Flt Protected		0.977			0.974			0.994			0.999	
Satd, Flow (prot)	0	1622	0	0	1719	0	0	1709	0	0	1637	0
Flt Permitted		0.806			0.807			0.935			0.996	
Satd, Flow (perm)	0	1338	0	0	1420	0	0	1608	0	0	1632	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd Flow (RTOR)		68						26			112	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		425.8			377.5			821.0			385.3	
Travel Time (s)		30.7			27.2			59.1			27.7	
Confl Peds (#/br)		00.1	5	5	21.2		2	00.1	2	2	21.1	2
Peak Hour Eactor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Shared Lane Traffic (%)	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75	0.75
Lane Group Flow (vph)	, 	182	0	0	05	0	٥	221	0	0	470	0
Turn Type	Dorm	NA	0	Dorm	NA	0	Dorm	ZZ I NA	0	Dorm	473 NA	0
Protected Phases	renn			r enn	8		reiiii	2		r enn	6	
Permitted Phases	4	4		Q	0		2	2		6	0	
Detector Phase	4	1		8	Q		2	2		6	6	
Switch Phase	7	т		0	0		2	2		0	0	
Minimum Initial (s)	7.0	70		70	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (%)	50.0%	50.0%		50.0%	50.0%		50.0%	50.0%		50.0%	50.0%	
Maximum Green (s)	18.0	18.0		18.0	18.0		18.0	18.0		18.0	18.0	
Vellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)	1.0	1.0		1.0	0.0		1.0	0.0		1.0	0.0	
Total Lost Time (s)		0.0			0.0			0.0			0.0	
		4.5			4.5			4.5			4.0	
Lead/Lag												
Vehicle Extension (a)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Decell Mede	J.U	S.U		S.U	S.U		3.U	3.0 Max		3.0 Max	3.U	
				None	none		IVIAX	IVIAX			IVIAX	
Valk Time (S)	11.0	11.0					11.0	11.0		11.0	11.0	
Plash Done Walk (S)	11.0	11.0					11.0	11.0		11.0	11.0	
Act Effet Croop (c)	0	0			0.0		0	22.4		0	22.4	
Actuated a/C Patie		9.0			9.0			22.4			22.4	
Actualed g/C Railo		0.24			0.24			0.00			0.00	
V/C Rallo		0.49			0.28			0.23			0.47	
Control Delay		12.4			13.0			5.9			7.0	
Queue Delay		10.0			12.0			0.0			0.0	
LOS		12.4			13.0			5.9			1.0	
LUS Approach Dolou		10.4			12.0			A			A	
Approach Delay		12.4			13.0			5.9			1.0	

Synchro 11 Report Page 1

Lanes, Volumes, Timings 2033 Ba 1: North Rd (Hwy 101) & Reed Rd Timing Plan: Friday AM Peak											Base eak H	
	≯	+	1	4	Ļ	•	•	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Approach LOS		В			В			А			А	
Queue Length 50th (m)		5.8			4.8			5.5			11.8	
Queue Length 95th (m)		12.2			9.6			13.4			25.1	
Internal Link Dist (m)		401.8			353.5			797.0			361.3	
Turn Bay Length (m)												
Base Capacity (vph)		682			687			978			1027	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.27			0.14			0.23			0.47	
Intersection Summary												
Area Type: Of	ther											
Cycle Length: 45												
Actuated Cycle Length: 3	37.2											
Natural Cycle: 45												
Control Type: Semi Act-L	Jncoor	b										
Maximum v/c Ratio: 0.49	1											
Intersection Signal Delay	: 8.3			h	ntersect	on LOS	: A					
Intersection Capacity Util	lization	39.7%		[0	CU Leve	el of Ser	vice A					
Analysis Period (min) 15												

Splits and Phases: 1: North Rd (Hwy 101) & Reed Rd

<1Ø2	404	
22.5 s	22.5 s	
₽ Ø6	₩ Ø8	
22.5 s	22.5 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Ti	mings									203	3 Base	+Site
1: North Rd (Hwy 1	01) & I	Reed R	d					Tin	ning Pla	n: Frida	ay AM P	eak Hr
	∕	→	7	¥	4	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			4	
Traffic Volume (vph)	61	22	53	39	32	0	26	124	28	5	193	160
Future Volume (vph)	61	22	53	39	32	0	26	124	28	5	193	160
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			1.00			1.00			0.99	
Frt		0.947						0.979			0.940	
Flt Protected		0.978			0.973			0.993			0.999	
Satd. Flow (prot)	0	1617	0	0	1717	0	0	1709	0	0	1640	0
Flt Permitted		0.809			0.779			0.910			0.996	
Satd. Flow (perm)	0	1338	0	0	1371	0	0	1566	0	0	1635	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		72						25			107	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		425.8			377.5			821.0			385.3	
Travel Time (s)		30.7			27.2			59.1			27.7	
Confl. Peds. (#/hr)			5	5			2		2	2		2
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Shared Lane Traffic (%)											
Lane Group Flow (vph)	0	187	0	0	97	0	0	244	0	0	490	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	22.6	22.6		22.6	22.6		27.4	27.4		27.4	27.4	
Total Split (%)	45.2%	45.2%		45.2%	45.2%		54.8%	54.8%		54.8%	54.8%	
Maximum Green (s)	18.1	18.1		18.1	18.1		22.9	22.9		22.9	22.9	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0					7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0					11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0					0	0		0	0	
Act Effct Green (s)		9.5			9.5			27.2			27.2	
Actuated g/C Ratio		0.22			0.22			0.64			0.64	
v/c Ratio		0.53			0.32			0.24			0.45	
Control Delay		14.8			16.1			5.7			6.5	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		14.8			16.1			5.7			6.5	
LOS		В			В			A			Α	
Approach Delay		14.8			16.1			5.7			6.5	

Synchro 11 Report Page 1

1: North Rd (Hwy 10	1) & F	Reed R	d					Tin	ning Plai	n: Frida	iy AM Pe	eak H
	٦	-	\mathbf{r}	4	←	•	٩	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Approach LOS		В			В			А			А	
Queue Length 50th (m)		7.3			6.0			6.7			13.2	
Queue Length 95th (m)		14.4			11.5			15.3			26.9	
Internal Link Dist (m)		401.8			353.5			797.0			361.3	
Turn Bay Length (m)												
Base Capacity (vph)		612			585			1012			1085	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.31			0.17			0.24			0.45	
Intersection Summary												
Area Type: Ot	her											
Cycle Length: 50												
Actuated Cycle Length: 4	2.5											
Natural Cycle: 50												
Control Type: Semi Act-L	Jncoor	d										
Maximum v/c Ratio: 0.53												
Intersection Signal Delay	: 8.8			li I	ntersecti	on LOS	: A					
Intersection Capacity Util	ization	44.2%		10	CU Leve	of Serv	vice A					

Splits and Phases: 1: North Rd (Hwy 101) & Reed Rd

	A 04					
27.4 s	22.6 s					
Ø6	₩ Ø8					
27.4 s	22.6 s					

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanas Volumos Ti	minac										2022	Pasa
1: North Rd (Hwv 1	01) & I	Reed R	d					Tin	ning Pla	an: Frida	2023 ay PM Pe	eak Hr
	۶	-	7	4	+	×	•	1	/	1	Ļ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			£.	
Traffic Volume (vph)	142	30	39	27	41	1	46	162	28	5	203	271
Future Volume (vph)	142	30	39	27	41	1	46	162	28	5	203	271
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			1.00			0.99	
Frt		0.975			0.998			0.984			0.924	
Flt Protected		0.967			0.981			0.990				
Satd. Flow (prot)	0	1657	0	0	1728	0	0	1719	0	0	1611	0
Flt Permitted		0.765			0.851			0.836			0.997	
Satd. Flow (perm)	0	1311	0	0	1498	0	0	1452	0	0	1606	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		20			1			17			165	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		425.8			377.5			821.0			385.3	
Travel Time (s)		30.7			27.2			59.1			27.7	
Confl. Peds. (#/hr)			2	2			1					1
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Shared Lane Traffic (%)											
Lane Group Flow (vph)	0	270	0	0	89	0	0	303	0	0	613	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	24.0	24.0		24.0	24.0		36.0	36.0		36.0	36.0	
Total Split (%)	40.0%	40.0%		40.0%	40.0%		60.0%	60.0%		60.0%	60.0%	
Maximum Green (s)	19.5	19.5		19.5	19.5		31.5	31.5		31.5	31.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0					7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0					11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0					0	0		0	0	_
Act Effct Green (s)		15.6			15.6			33.7			33.7	
Actuated g/C Ratio		0.27			0.27			0.58			0.58	
v/c Ratio		0.74			0.22			0.36			0.61	
Control Delay		30.4			16.5			8.6			9.8	
Queue Delay		0.0			0.0			0.0			0.0	
I otal Delay		30.4			16.5			8.6			9.8	_
LOS		C			B			A			A	
Approach Delay		30.4			16.5			8.6			9.8	

Synchro 11 Report Page 1

Lanes, Volumes, Timings2023 E1: North Rd (Hwy 101) & Reed RdTiming Plan: Friday PM Pea										Base eak H		
	≯	+	•	4	+	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Approach LOS		С			В			А			А	
Queue Length 50th (m)		23.9			7.2			15.3			27.6	
Queue Length 95th (m)		37.6			14.0			27.1			47.1	
Internal Link Dist (m)		401.8			353.5			797.0			361.3	
Turn Bay Length (m)												
Base Capacity (vph)		453			503			846			998	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.60			0.18			0.36			0.61	
Intersection Summary												
Area Type: Of	ther											
Cycle Length: 60												
Actuated Cycle Length: 5	58.3											
Natural Cycle: 60												
Control Type: Semi Act-L	Jncoor	d										
Maximum v/c Ratio: 0.74												
Intersection Signal Delay	r: 14.4			h	ntersect	ion LOS	: B					
Intersection Capacity Util	lization	71.2%		10	CU Leve	el of Ser	vice C					
Analysis Period (min) 15												

Splits and Phases: 1: North Rd (Hwy 101) & Reed Rd

↑ ø 2		A ₀₄	
36 s	2	24 s	
↓ Ø6		€ Ø8	
36 s	2	24 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes Volumes Ti	minae										2028	Base
1: North Rd (Hwy 1)	01) & I	Reed F	d					Tin	ning Pla	n: Frida	ay PM P	eak Hr
	٨	-	\mathbf{F}	¥	+	•	*	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	156	33	46	31	45	1	54	188	32	6	237	298
Future Volume (vph)	156	33	46	31	45	1	54	188	32	6	237	298
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			1.00			0.99	
Frt		0.974			0.999			0.984			0.926	
Flt Protected		0.968			0.980			0.990			0.999	
Satd. Flow (prot)	0	1656	0	0	1728	0	0	1719	0	0	1613	0
Flt Permitted		0.777			0.835			0.809			0.996	
Satd. Flow (perm)	0	1329	0	0	1471	0	0	1405	0	0	1608	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		21			1			17			160	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		425.8			377.5			821.0			385.3	
Travel Time (s)		30.7			27.2			59.1			27.7	
Confl. Peds. (#/hr)			2	2			1					1
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Shared Lane Traffic (%)											
Lane Group Flow (vph)	0	301	0	0	99	0	0	351	0	0	694	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	23.0	23.0		23.0	23.0		37.0	37.0		37.0	37.0	
Total Split (%)	38.3%	38.3%		38.3%	38.3%		61.7%	61.7%		61.7%	61.7%	
Maximum Green (s)	18.5	18.5		18.5	18.5		32.5	32.5		32.5	32.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	_
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0					7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0					11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0			10.0		0	0		0	0	
Act Effect Green (s)		16.2			16.2			33.9			33.9	
Actuated g/C Ratio		0.27			0.27			0.57			0.57	
V/c Ratio		0.80			0.25			0.43			0.70	
Control Delay		35.3			17.4			9.5			12.2	
Queue Delay		0.0			0.0			0.0			0.0	
LOC		35.3			17.4			9.5			12.2	
LUS Annar a de Dalass		0			B			A			B	
Approach Delay		35.3			17.4			9.5			12.2	

Synchro 11 Report Page 1

2028 Base Lanes, Volumes, Timings 1: North Rd (Hwy 101) & Reed Rd Timing Plan: Friday PM Peak Hr $\rightarrow \gamma \neq \uparrow \checkmark \checkmark$ ٠ f EBL EBT EBR WBL WBT WBR NBL NBT Lane Group NBR SBI SBT SBR Approach LOS D В Α В Queue Length 50th (m) Queue Length 95th (m) 28.3 8.3 20.9 41.1 43.5 15.7 31.1 57.2 Internal Link Dist (m) 401.8 353.5 797.0 361.3 Turn Bay Length (m) Base Capacity (vph) Starvation Cap Reductn 430 461 813 991 0 0 0 0 Spillback Cap Reductn 0 0 0 0 Storage Cap Reductn 0 0 0 0 Reduced v/c Ratio 0.70 0.21 0.43 0.70 Intersection Summary Area Type: Other Cycle Length: 60 Actuated Cycle Length: 59.1 Natural Cycle: 60 Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.80 Intersection Signal Delay: 16.7 Intersection Capacity Utilization 79.8% Intersection LOS: B ICU Level of Service D Analysis Period (min) 15

Splits and Phases: 1: North Rd (Hwy 101) & Reed Rd

		→ ₀₄	
37 s		23 s	
↓ Ø6		₹_Ø8	
37 s		23 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Ti	mings									202	8 Base	+Site
1: North Rd (Hwy 1	01) & I	Reed R	d					Tin	ning Pla	ın: Frida	ay PM P	eak Hr
	٨	-	\mathbf{r}	¥	+	×	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			4	
Traffic Volume (vph)	156	33	52	32	45	1	62	195	33	6	250	298
Future Volume (vph)	156	33	52	32	45	1	62	195	33	6	250	298
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			1.00			1.00			0.99	
Frt		0.971			0.999			0.985			0.927	
Flt Protected		0.969			0.980			0.989			0.999	
Satd. Flow (prot)	0	1652	0	0	1728	0	0	1719	0	0	1615	0
Flt Permitted		0.781			0.829			0.794			0.996	
Satd. Flow (perm)	0	1332	0	0	1460	0	0	1380	0	0	1610	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		24			1			17			152	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		425.8			377.5			821.0			385.3	
Travel Time (s)		30.7			27.2			59.1			27.7	
Confl. Peds. (#/hr)			2	2			1					1
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Shared Lane Traffic (%)											
Lane Group Flow (vph)	0	309	0	0	100	0	0	371	0	0	711	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2	_		6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	23.0	23.0		23.0	23.0		37.0	37.0		37.0	37.0	
Total Split (%)	38.3%	38.3%		38.3%	38.3%		61.7%	61.7%		61.7%	61.7%	
Maximum Green (s)	18.5	18.5		18.5	18.5		32.5	32.5		32.5	32.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	_
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	_
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												_
Lead-Lag Optimize?	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Venicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
	None	None		None	None		IVIAX	Max		Max	iviax	
Vvaik Time (s)	11.0	11.0					7.0	11.0		11.0	7.0	
Padastrian Calls (#/br)	11.0	11.0					11.0	11.0		11.0	11.0	
Act Effet Green (c)	0	16.2			16.2		U	33 o U		U	33.6	
Actuated a/C Ratio		0.27			0.27			0.57			0.57	
v/c Patio		0.27			0.27			0.07			0.57	
Control Delay		35.0			17 /			10.47			13.2	
		0.0			0.0			10.1			13.3	
Total Delay		35.0			17 /			10.0			13.3	
		55.9 D			17.4 R			IU.I			10.0 R	
Approach Delay		35.9			17.4			10 1			13.3	
Apploach Delay		55.9			17.4			10.1			15.5	

Synchro 11 Report Page 1

Lanes, Volumes, Timings 2028 Bas 1: North Rd (Hwy 101) & Reed Rd Timing Plan: Friday PM											8 Base ay PM Pe	+Site eak H
	≯	+	*	4	Ļ	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Approach LOS		D			В			В			В	
Queue Length 50th (m)		28.9			8.4			22.8			44.2	
Queue Length 95th (m)		44.5			15.8			33.7			61.1	
Internal Link Dist (m)		401.8			353.5			797.0			361.3	
Turn Bay Length (m)												
Base Capacity (vph)		434			458			797			985	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.71			0.22			0.47			0.72	
Intersection Summary												
Area Type: Of	ther											
Cycle Length: 60												
Actuated Cycle Length: 5	59											
Natural Cycle: 60												
Control Type: Semi Act-U	Jncoor	d										
Maximum v/c Ratio: 0.80)											
Intersection Signal Delay	r: 17.4			Ir	ntersect	ion LOS	: B					
Intersection Capacity Util	lization	82.4%		10	CU Leve	el of Ser	vice E					
Analysis Period (min) 15												

Splits and Phases: 1: North Rd (Hwy 101) & Reed Rd

1 Ø2		A 24	
37 s		23 s	
Ø6		€ Ø8	
37 s		23 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Ti	mings										2033	Base
1: North Rd (Hwy 1	01) & I	Reed F	d					Tin	ning Pla	n: Frida	ay PM Pe	eak Hr
	٨	-	\mathbf{r}	¥	+	•	1	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	170	36	50	33	49	1	58	204	35	6	258	325
Future Volume (vph)	170	36	50	33	49	1	58	204	35	6	258	325
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util, Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			1.00			0.99	
Frt		0.974			0.999			0.984			0.926	
Flt Protected		0.968			0.981			0.990			0.999	
Satd, Flow (prot)	0	1656	0	0	1729	0	0	1719	0	0	1613	0
Flt Permitted		0.774			0.831			0.807			0.996	-
Satd, Flow (perm)	0	1324	0	0	1464	0	0	1401	0	0	1608	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd, Flow (RTOR)		21			1			17			159	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		425.8			377.5			821.0			385.3	
Travel Time (s)		30.7			27.2			59.1			27.7	
Confl. Peds. (#/hr)			2	2			1					1
Peak Hour Factor	0 78	0 78	0.78	0.78	0 78	0 78	0.78	0 78	0 78	0 78	0 78	0.78
Shared Lane Traffic (%)	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10	0.10
Lane Group Flow (vph)	, 0	328	0	0	106	0	0	381	0	0	756	0
Turn Type	Perm	NA	Ū	Perm	NA	Ũ	Perm	NA	v	Perm	NA	v
Protected Phases		4			8			2			6	
Permitted Phases	4	•		8	Ŭ		2	-		6	Ŭ	
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	23.4	23.4		23.4	23.4		36.6	36.6		36.6	36.6	
Total Split (%)	39.0%	39.0%		39.0%	39.0%		61.0%	61.0%		61.0%	61.0%	
Maximum Green (s)	18.9	18.9		18.9	18.9		32.1	32.1		32.1	32.1	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0					7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0					11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0					0	0		0	0	
Act Effct Green (s)		16.9			16.9			32.9			32.9	
Actuated g/C Ratio		0.29			0.29			0.56			0.56	
v/c Ratio		0.83			0.25			0.48			0.78	
Control Delay		38.4			17.1			10.6			16.1	
Queue Delay		0.0			0.0			0.0			0.0	
Total Delay		38.4			17.1			10.6			16.1	
LOS		D			В			В			В	
Approach Delay		38.4			17.1			10.6			16.1	

Synchro 11 Report Page 1

Lanes, Volumes, Tim 1: North Rd (Hwy 10	nings 1) & F	Reed R			Tin	ning Plai	n: Frida	2033 y PM Pe	Base eak H			
	۲	+	*	< ·	Ļ	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL W	BT ۱/	WBR	NBL	NBT	NBR	SBL	SBT	SBF
Approach LOS		D			В			В			В	
Queue Length 50th (m)		31.4			8.9			24.1			51.1	
Queue Length 95th (m)		#48.8		1	6.4			35.2			69.5	
Internal Link Dist (m)		401.8		35	3.5			797.0			361.3	
Turn Bay Length (m)												
Base Capacity (vph)		439		4	470			792			970	
Starvation Cap Reductn		0			0			0			0	
Spillback Cap Reductn		0			0			0			0	
Storage Cap Reductn		0			0			0			0	
Reduced v/c Ratio		0.75		0	.23			0.48			0.78	
Intersection Summary												
Area Type: Of	ther											
Cycle Length: 60												
Actuated Cycle Length: 5	58.8											
Natural Cycle: 60												
Control Type: Semi Act-L	Jncoor	b										
Maximum v/c Ratio: 0.83												
Intersection Signal Delay	19.5			Inter	rsectio	on LOS:	В					
Intersection Capacity Util	lization	85.7%		ICU	Level	of Serv	ice E					
Analysis Period (min) 15												
# 95th percentile volum	ie exce	eds cap	acity, c	ueue may	be lon	nger.						
Queue shown is maxi	mum a	tter two	cycles.									

Splits and Phases: 1: North Rd (Hwy 101) & Reed Rd

< ↑ ø2	_{∅4}	
36.6 s	23.4 s	
↓>>∞	✓ Ø8	
36.6 s	23.4 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes. Volumes. Ti	minas									203	3 Base	+Site
1: North Rd (Hwy 1	01) & I	Reed R	d					Tin	ning Pla	ın: Frida	ay PM P	eak Hr
	٨	→	\mathbf{r}	¥	+	×	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			44			4			4	
Traffic Volume (vph)	170	36	56	34	49	1	66	211	36	6	271	325
Future Volume (vph)	170	36	56	34	49	1	66	211	36	6	271	325
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00			1.00			0.99	
Frt		0.971			0.999			0.985			0.927	
Flt Protected		0.969			0.980			0.990			0.999	
Satd. Flow (prot)	0	1652	0	0	1728	0	0	1721	0	0	1615	0
Flt Permitted		0.776			0.822			0.783			0.996	
Satd. Flow (perm)	0	1323	0	0	1448	0	0	1361	0	0	1610	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		24			1			16			148	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		425.8			377.5			821.0			385.3	
Travel Time (s)		30.7			27.2			59.1			27.7	
Confl. Peds. (#/hr)			2	2			1					1
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Shared Lane Traffic (%)											
Lane Group Flow (vph)	0	336	0	0	108	0	0	402	0	0	772	0
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	7.0	7.0		7.0	7.0		10.0	10.0		10.0	10.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	24.0	24.0		24.0	24.0		36.0	36.0		36.0	36.0	
Total Split (%)	40.0%	40.0%		40.0%	40.0%		60.0%	60.0%		60.0%	60.0%	
Maximum Green (s)	19.5	19.5		19.5	19.5		31.5	31.5		31.5	31.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0			0.0			0.0	
Total Lost Time (s)		4.5			4.5			4.5			4.5	
Lead/Lag												_
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		Max	Max		Max	Max	
Walk Time (s)	7.0	7.0					7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0					11.0	11.0		11.0	11.0	
Pedestrian Calls (#/nr)	0	0			47.0		0	0		0	0	
Act Effect Green (s)		17.2			17.2			32.2			32.2	
Actuated g/C Ratio		0.29			0.29			0.55			0.55	
V/C Ratio		0.83			0.25			0.53			0.81	
Control Delay		36.9			16.7			11.9			18.4	_
Queue Delay		0.0			0.0			0.0			0.0	
LOC		36.9			16.7			11.9			18.4	_
LUS Annua als Dalau		D			40 Z			B			B	
Approacn Delay		36.9			16.7			11.9			18.4	

Synchro 11 Report Page 1

Lanes, Volumes, Timings I: North Rd (Hwy 101) & Reed Rd Timin											2033 Base+Site ing Plan: Friday PM Peak Hr				
	٦	-	\mathbf{r}	•	•	×	1	1	۲	1	ţ	~			
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBF			
Approach LOS		D			В			В			В				
Queue Length 50th (m)		31.7			8.9			27.1			56.3				
Queue Length 95th (m)		48.2			16.4			39.5			76.2				
Internal Link Dist (m)		401.8			353.5			797.0			361.3				
Turn Bay Length (m)															
Base Capacity (vph)		458			484			758			954				
Starvation Cap Reductn		0			0			0			0				
Spillback Cap Reductn		0			0			0			0				
Storage Cap Reductn		0			0			0			0				
Reduced v/c Ratio		0.73			0.22			0.53			0.81				
Intersection Summary															
Area Type: Of	ther														
Cycle Length: 60															
Actuated Cycle Length: 5	58.4														
Natural Cycle: 60															
Control Type: Semi Act-L	Jncoord	t t													
Maximum v/c Ratio: 0.83															
Intersection Signal Delay	: 20.5			Ir	ntersect	ion LOS	: C								
Intersection Capacity Util	lization	87.9%		10	CU Leve	el of Ser	vice E								
Analysis Period (min) 15															

Splits and Phases: 1: North Rd (Hwy 101) & Reed Rd

↑ ø 2		A ₀₄	
36 s	2	24 s	
↓ Ø6		€ Ø8	
36 s	2	24 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Ti 2: School Rd/North	01)	Tin	ning Pla	an: Frida	2023 ay AM F	Base Peak Hr						
	٠	→	\mathbf{r}	•	+	•	٠	t	1	5	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ĥ		ሻ	f,			4			4	1
Traffic Volume (vph)	120	78	147	10	126	9	150	41	3	16	63	197
Future Volume (vph)	120	78	147	10	126	9	150	41	3	16	63	197
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	70.0		0.0	55.0		0.0	0.0		0.0	0.0		180.0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.96	0.99		1.00	0.99			0.89			1.00	0.82
Frt		0.902			0.990			0.998				0.850
Flt Protected	0.950			0.950				0.963			0.990	
Satd. Flow (prot)	1509	1412	0	1509	1564	0	0	1526	0	0	1572	1350
Flt Permitted	0.416			0.573				0.704			0.921	
Satd. Flow (perm)	635	1412	0	908	1564	0	0	990	0	0	1462	1100
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		201			6			1				270
Link Speed (k/h)		50			50			30			50	
Link Distance (m)		375.6			381.6			659.4			821.0	
Travel Time (s)		27.0			27.5			79.1			59.1	
Confl. Peds. (#/hr)	35		1	2		35	101		2	2		101
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Shared Lane Traffic (%)											
Lane Group Flow (vph)	, 164	308	0	14	185	0	0	265	0	0	108	270
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		8	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	7.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
Total Split (s)	11.6	34.2		22.6	22.6		25.8	25.8		25.8	25.8	25.8
Total Split (%)	19.3%	57.0%		37.7%	37.7%		43.0%	43.0%		43.0%	43.0%	43.0%
Maximum Green (s)	7.1	29.7		18.1	18.1		21.3	21.3		21.3	21.3	21.3
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5			4.5			4.5	4.5
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	Max	None		None	None		Max	Max		None	None	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0		0	0		0	0	0
Act Effct Green (s)	21.0	21.0		12.2	12.2		-	21.6			21.6	21.6
Actuated g/C Ratio	0.41	0.41		0.24	0.24			0.42			0.42	0.42
v/c Ratio	0.42	0.45		0.07	0.50			0.64			0.18	0.44
Control Delay	13.0	6.0		16.8	22.6			24.4			12.6	4.7
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0
	0.0	0.0		0.0	0.0			0.0			0.0	

Lanes, Volumes, Tin 2: School Rd/North F	nings Rd (Hv	wy 101) & Gi	bsons	Way (I	Hwy 10)1)	Tin	ning Pla	n: Frida	2023 iy AM P	Base eak Hr
	۲	+	*	4	ţ	×	•	1	1	1	ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	13.0	6.0		16.8	22.6			24.4			12.6	4.7
LOS	В	А		В	С			С			В	A
Approach Delay		8.4			22.2			24.4			7.0	
Approach LOS		А			С			С			А	
Queue Length 50th (m)	9.9	6.3		1.1	16.1			20.6			6.7	0.0
Queue Length 95th (m)	15.4	11.8		3.8	24.6			37.1			14.0	6.2
Internal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	391	906		322	559			414			611	616
Starvation Cap Reductn	0	0		0	0			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.42	0.34		0.04	0.33			0.64			0.18	0.44
Intersection Summary												
Area Type: C	BD											
Cycle Length: 60												
Actuated Cycle Length: 5	51.8											
Natural Cycle: 60												
Control Type: Semi Act-I	Jncoor	d										
Maximum v/c Ratio: 0.64												
Intersection Signal Delay	r: 13.3			li li	ntersect	ion LOS	5: B					
Intersection Capacity Uti	lizatior	1 59.6%		1	CU Leve	el of Ser	vice B					
Analysis Period (min) 15												

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

25.8 s	34.2 s		
Ø6		✓ Ø8	
25.8 s	11.6 s	22.6 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lane Group EBL EBL EBR WBL WBT WBR NBI NBT NBR SBL SBT SBR Lane Configurations 1 1 14 10 171 45 3 18 69 227 Future Volume (vph) 146 96 179 11 144 10 171 45 3 18 69 227 Future Volume (vph) 140 100 <t< th=""><th>Lanes, Volumes, Ti 2: School Rd/North</th><th>mings Rd (Hⁱ</th><th>wy 101</th><th>) & Gi</th><th>bsons</th><th>Way (</th><th>Hwy 10</th><th>01)</th><th>Tin</th><th>ning Pla</th><th>ın: Frida</th><th>2028 ay AM F</th><th>Base Peak Hr</th></t<>	Lanes, Volumes, Ti 2: School Rd/North	mings Rd (H ⁱ	wy 101) & Gi	bsons	Way (Hwy 10	01)	Tin	ning Pla	ın: Frida	2028 ay AM F	Base Peak Hr
Lane Group EBL EBT EBR WBL WBT WBR NBT NBT NBR SBL SBT SBR SBT SBT SBT SBT SBT SBT SBT SBT SBT		٠	-	\mathbf{r}	•	+	•	1	t	۲	5	ţ	~
Lane Configurations 1 1 144 10 171 45 3 18 69 227 Future Volume (vph) 146 96 179 11 144 10 171 45 3 18 69 227 Ideal Flow (vphpl) 1800 100 1.	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph) 146 96 179 11 144 10 171 45 3 18 69 227 Ideal Flow (vphp) 1800 100 <td>Lane Configurations</td> <td>٦</td> <td>ĥ</td> <td></td> <td>ሻ</td> <td>f,</td> <td></td> <td></td> <td>4</td> <td></td> <td></td> <td>4</td> <td>1</td>	Lane Configurations	٦	ĥ		ሻ	f,			4			4	1
Future Volume (vph) 146 96 179 11 144 10 171 45 3 18 69 227 Ideal Flow (vphp) 1800	Traffic Volume (vph)	146	96	179	11	144	10	171	45	3	18	69	227
Ideal Flow (vphpl) 1800 100 1.00 <td>Future Volume (vph)</td> <td>146</td> <td>96</td> <td>179</td> <td>11</td> <td>144</td> <td>10</td> <td>171</td> <td>45</td> <td>3</td> <td>18</td> <td>69</td> <td>227</td>	Future Volume (vph)	146	96	179	11	144	10	171	45	3	18	69	227
Storage Length (m) 70.0 0.0 55.0 0.0 0.0 0.0 0.0 180.0 Storage Lanes 1 0 1 0 0 0 0 0 0 1 Lane Ulii. Factor 1.00 0.08 1.00 0.82 0.850 0.890 0.890 0.890 0.890 1.552 0.990 5.50 0.990 5.50 0.990 5.50 0.990 5.50 0.903 5.50 1.10 1.10 1.11	Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Lanes 1 0 1 0 0 0 0 1 Taper Length (m) 7.5 7.	Storage Length (m)	70.0		0.0	55.0		0.0	0.0		0.0	0.0		180.0
Taper Length (m) 7.5 7.5 7.5 7.5 7.5 Lane Util, Factor 1.00 0.83 1.00 0.82 Fit Portocted 0.905 0.905 0.9962 0.996 0.990 0.996 0.909 50 50 1.00 0.4143 1100 Right Turn on Red Yes	Storage Lanes	1		0	1		0	0		0	0		1
Lane Util. Factor 1.00 0.02 Fit Protected 0.950 0.950 0.965 0.965 0.990 0 1.443 1100 Stdt, Flow (port) 1509 1414 0 853 1564 0 0 979 0 1.443 1100 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes 12 11 1.00 3.00 50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00<	Taper Length (m)	7.5			7.5			7.5			7.5		
Ped Bike Factor 0.96 0.99 0.09 0.998 0.850 Fit 0.900 0.998 0.850 0.850 0.850 Satd, Flow (prot) 1509 1414 0 1509 1564 0 0 1572 1350 Satd, Flow (perm) 650 1414 0 853 1564 0 0 979 0 0 1443 1100 Right Turn on Red Yes	Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Frt 0.903 0.990 0.980 0.986 0.850 Flt Protected 0.950 0.962 0.907 Stad. Flow (prot) 1509 1414 0 1509 1564 0 0 1572 1350 Flt Permitted 0.425 0.538 0.695 0.909 0 0 1413 100 Right Turn on Red Yes	Ped Bike Factor	0.96	0.99		1.00	0.99			0.89			1.00	0.82
Flt Protected 0.950 0.950 0.962 0.990 Satd. Flow (prot) 1509 1414 0 1509 1564 0 0 1524 0 1572 1350 Flt Permitted 0.425 0.538 0.695 0.999 0 0 1443 1100 Right Tum on Red Yes Yes <t< td=""><td>Frt</td><td></td><td>0.903</td><td></td><td></td><td>0.990</td><td></td><td></td><td>0.998</td><td></td><td></td><td></td><td>0.850</td></t<>	Frt		0.903			0.990			0.998				0.850
Satd, Flow (prot) 1509 1414 0 1509 1564 0 0 1522 1350 Flt Permitted 0.425 0.538 0.695 0.909 0 1443 1100 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd, Flow (RTOR) 220 6 1 311 111 1101 50 50 30 50 Link Speed (kh) 50 27.0 27.5 79.1 59.1 50.1	Flt Protected	0.950			0.950				0.962			0.990	
Flt Permitted 0.425 0.538 0.695 0.909 Satd. Flow (perm) 650 1414 0 853 1564 0 0 979 0 0 1413 1100 Right Turn on Red Yes Yes <th< td=""><td>Satd. Flow (prot)</td><td>1509</td><td>1414</td><td>0</td><td>1509</td><td>1564</td><td>0</td><td>0</td><td>1524</td><td>0</td><td>0</td><td>1572</td><td>1350</td></th<>	Satd. Flow (prot)	1509	1414	0	1509	1564	0	0	1524	0	0	1572	1350
Satd, Flow (perm) 650 1414 0 853 1564 0 0 979 0 0 1443 1100 Right Turn on Red Yes Yes <t< td=""><td>Flt Permitted</td><td>0.425</td><td></td><td></td><td>0.538</td><td></td><td></td><td></td><td>0.695</td><td></td><td></td><td>0.909</td><td></td></t<>	Flt Permitted	0.425			0.538				0.695			0.909	
Right Turn on Red Yes Yes Yes Yes Yes Yes Said, Flow (RTOR) 220 6 1 311 Link Speed (kh) 50 30 50 Link Distance (m) 375.6 381.6 659.4 821.0 Confl. Peds (#hr) 35 1 2 25 79.1 50.73 0.73	Satd. Flow (perm)	650	1414	0	853	1564	0	0	979	0	0	1443	1100
Said Flow (RTOR) 220 6 1 311 Link Speed (k/h) 50 50 30 50 Link Distance (m) 375.6 381.6 659.4 821.0 Travel Time (s) 27.0 27.5 79.1 20.1 Confi. Peds. (#/hr) 35 1 2 35 101 2 2 101 Peak Hour Factor 0.73	Right Turn on Red			Yes			Yes			Yes			Yes
Link Speed (k/h) 50 50 30 50 Link Distance (m) 375.6 381.6 659.4 821.0 Travel Time (s) 27.0 27.5 79.1 59.1 Confl. Peds. (#/hr) 35 1 2 35 101 2 2 101 Peak Hour Factor 0.73	Satd. Flow (RTOR)		220			6			1				311
	Link Speed (k/h)		50			50			30			50	
Travel Time (s) 27.0 27.5 79.1 59.1 Confi. Peds. (#/hr) 35 1 2 35 101 2 2 101 Peak Hour Factor 0.73 <	Link Distance (m)		375.6			381.6			659.4			821.0	
Confl. Peds. (#/hr) 35 1 2 35 101 2 2 101 Peak Hour Factor 0.73	Travel Time (s)		27.0			27.5			79.1			59.1	
Peak Hour Factor 0.73	Confl. Peds. (#/hr)	35		1	2		35	101		2	2		101
Shared Lane Traffic (%) Solution Soluti	Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Lane Group Flow (vph) 200 377 0 15 211 0 0 300 0 0 120 311 Turn Type pm+pt NA Perm NA Na Na Na <t< td=""><td>Shared Lane Traffic (%</td><td>)</td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>	Shared Lane Traffic (%)											
Turn Type pm+pt NA Perm Perm NA Perm NA Perm Perm NA Perm NA Perm Perm NA Perm Perm NA Perm Perm Perm NA Perm P	Lane Group Flow (vph)	200	377	0	15	211	0	0	300	0	0	120	311
Protected Phases 7 4 8 2 6 Permitted Phases 4 8 2 6 6 Detector Phase 7 4 8 8 2 6 6 Switch Phase 7 4 8 8 2 2 6 6 Switch Phase 7 10.0 1.0	Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Permitted Phases 4 8 2 6 6 Detector Phase 7 4 8 8 2 2 6 6 6 Switch Phase	Protected Phases	7	4			8			2			6	
Detector Phase 7 4 8 8 2 2 6 6 6 Switch Phase Minimum Initial (s) 7.0 10.0 1.0 </td <td>Permitted Phases</td> <td>4</td> <td></td> <td></td> <td>8</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>6</td> <td></td> <td>6</td>	Permitted Phases	4			8			2			6		6
Switch Phase Minimum Initial (s) 7.0 10.0	Detector Phase	7	4		8	8		2	2		6	6	6
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Switch Phase												
$\begin{array}{l c c c c c c c c c c c c c c c c c c c$	Minimum Initial (s)	7.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	10.0
Total Split (s) 11.6 34.1 22.5 25.9	Minimum Split (s)	11.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Split (s)	11.6	34.1		22.5	22.5		25.9	25.9		25.9	25.9	25.9
$\begin{array}{c c c c c c c c c c c c c c c c c c c $	Total Split (%)	19.3%	56.8%		37.5%	37.5%		43.2%	43.2%		43.2%	43.2%	43.2%
Yellow Time (s) 3.5	Maximum Green (s)	7.1	29.6		18.0	18.0		21.4	21.4		21.4	21.4	21.4
All-Red Time (s) 1.0	Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
Lost Time Adjust (s) 0.0	All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Total Lost Time (s) 4.5 5 5 5 <	Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Lead/Lag Lead Lag Lag Lead-Lag Optimize? Yes	Total Lost Time (s)	4.5	4.5		4.5	4.5			4.5			4.5	4.5
Lead-Lag Optimize? Yes Yes Yes Yes Vehicle Extension (s) 3.0 <	Lead/Lag	Lead			Lag	Lag							
Vehicle Extension (s) 3.0	Lead-Lag Optimize?	Yes			Yes	Yes							
Recall Mode Max None None None Max Max None None None Walk Time (s) 7.0 <td>Vehicle Extension (s)</td> <td>3.0</td> <td>3.0</td> <td></td> <td>3.0</td> <td>3.0</td> <td></td> <td>3.0</td> <td>3.0</td> <td></td> <td>3.0</td> <td>3.0</td> <td>3.0</td>	Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Walk Time (s) 7.0 <	Recall Mode	Max	None		None	None		Max	Max		None	None	None
Flash Dont Walk (s) 11.0 </td <td>Walk Time (s)</td> <td></td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td></td> <td>7.0</td> <td>7.0</td> <td>7.0</td>	Walk Time (s)		7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Pedestrian Calls (#/hr) 0	Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Act Effct Green (s) 24.5 24.5 12.8 12.8 21.5 21.5 21.5 Actuated g/C Ratio 0.45 0.45 0.23 0.23 0.39 0.30 0.50 Control Delay 14.3 6.9 16.6 24.5 34.2 13.4 5.3 Queue Delay 0.0 0.0 0.0 0.0 0.0	Pedestrian Calls (#/hr)		0		0	0		0	0		0	0	0
Actuated g/C Ratio 0.45 0.45 0.23 0.23 0.39 0.39 0.39 v/c Ratio 0.50 0.50 0.08 0.57 0.79 0.21 0.50 Control Delay 14.3 6.9 16.6 24.5 34.2 13.4 5.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Act Effct Green (s)	24.5	24.5		12.8	12.8			21.5			21.5	21.5
v/c Ratio 0.50 0.50 0.08 0.57 0.79 0.21 0.50 Control Delay 14.3 6.9 16.6 24.5 34.2 13.4 5.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Actuated g/C Ratio	0.45	0.45		0.23	0.23			0.39			0.39	0.39
Control Delay 14.3 6.9 16.6 24.5 34.2 13.4 5.3 Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0	v/c Ratio	0.50	0.50		0.08	0.57			0.79			0.21	0.50
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Control Delay	14.3	6.9		16.6	24.5			34.2			13.4	5.3
	Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0

Lanes, Volumes, Tin 2: School Rd/North F	nings Rd (H	wy 101) & Gil	bsons	Way (I	Hwy 10	1)	Tin	ning Pla	n: Frida	2028 ay AM P	Base eak Hr
	٦	-	\mathbf{F}	4	+	•	٠	Ť	۲	5	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	14.3	6.9		16.6	24.5			34.2			13.4	5.3
LOS	В	А		В	С			С			В	A
Approach Delay		9.5			24.0			34.2			7.6	
Approach LOS		А			С			С			А	
Queue Length 50th (m)	12.5	9.6		1.2	18.9			25.7			7.8	0.0
Queue Length 95th (m)	18.5	15.4		4.0	27.7			#51.3			15.9	6.3
Internal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	400	865		280	517			382			563	619
Starvation Cap Reductn	0	0		0	0			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.50	0.44		0.05	0.41			0.79			0.21	0.50
Intersection Summary												
Area Type: C	BD											
Cycle Length: 60												
Actuated Cycle Length: 5	55											
Natural Cycle: 60												
Control Type: Semi Act-L	Jncoor	ď										
Maximum v/c Ratio: 0.79)											
Intersection Signal Delay	r: 15.9			I	ntersect	ion LOS	: В					
Intersection Capacity Uti	lizatior	n 62.1%			CU Leve	el of Serv	vice B					
Analysis Period (min) 15												
# 95th percentile volum	ne exc	eeds cap	oacity, c	queue n	nay be lo	onger.						
Queue shown is maxi	imum a	after two	cycles.									

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

	<u>∞</u> 4		
25.9 s	34.1 s		
	✓ Ø7	₩ Ø8	
25.9 s	11.6 s	22.5 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Ti 2: School Rd/North	mings Rd (H	wy 101) & Gi	bsons	Way (Hwy 10	01)	Tin	ning Pla	202 an: Frida	8 Base ay AM F	e+Site eak Hr
	٦	+	*	¥	Ļ	*	◄	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	2	ĥ		2	t)			4			ť	1
Traffic Volume (vph)	156	96	179	11	144	14	171	50	3	23	80	249
Future Volume (vph)	156	96	179	11	144	14	171	50	3	23	80	249
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	70.0		0.0	55.0		0.0	0.0		0.0	0.0		180.0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.96	0.99		1.00	0.99			0.89			1.00	0.80
Frt		0.903			0.987			0.998				0.850
Flt Protected	0.950			0.950				0.963			0.989	
Satd, Flow (prot)	1509	1414	0	1509	1556	0	0	1526	0	0	1571	1350
Flt Permitted	0.401		-	0.538				0.686	-	-	0.897	
Satd, Flow (perm)	612	1414	0	853	1556	0	0	963	0	0	1424	1082
Right Turn on Red			Yes			Yes			Yes	-		Yes
Satd. Flow (RTOR)		190			7			1				341
Link Speed (k/h)		50			50			30			50	
Link Distance (m)		375.6			381.6			659.4			821.0	
Travel Time (s)		27.0			27.5			79.1			59.1	
Confl. Peds. (#/hr)	35		1	2		35	101		2	2		101
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Shared Lane Traffic (%)											
Lane Group Flow (vph)	214	377	0	15	216	0	0	306	0	0	142	341
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		8	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	7.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
Total Split (s)	11.8	34.4		22.6	22.6		30.6	30.6		30.6	30.6	30.6
Total Split (%)	18.2%	52.9%		34.8%	34.8%		47.1%	47.1%		47.1%	47.1%	47.1%
Maximum Green (s)	7.3	29.9		18.1	18.1		26.1	26.1		26.1	26.1	26.1
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5			4.5			4.5	4.5
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	Max	None		None	None		Max	Max		None	None	None
Walk Time (s)	max	7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0		0	0		0	0	0
Act Effct Green (s)	25.3	25.3		13.5	13.5		0	26.2		0	26.2	26.2
Actuated g/C Ratio	0.42	0.42		0.22	0.22			0.43			0.43	0.43
v/c Ratio	0.59	0.54		0.08	0.62			0.73			0.43	0.52
Control Delay	10.39	0.04		10.00	28.5			28.0			13.0	5.0
	0.0	0.0		19.0	20.0			20.9			0.0	0.0
	0.0	0.0		0.0	0.0			0.0			0.0	0.0

Lanes, Volumes, Tin 2: School Rd/North F	nings Rd (Hv	wy 101) & Gi	bsons	Way (I	Hwy 10	01)	Tin	ning Pla	202 n: Frida	8 Base ay AM P	e+Site eak Hr
	۲	+	*	4	Ļ	•	≺	Ť	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	19.2	9.3		19.0	28.5			28.9			13.0	5.0
LOS	В	А		В	С			С			В	A
Approach Delay		12.9			27.9			28.9			7.3	
Approach LOS		В			С			С			А	
Queue Length 50th (m)	16.2	14.0		1.4	22.0			27.9			9.8	0.0
Queue Length 95th (m)	22.9	20.9		4.3	31.4			45.8			18.1	5.7
Internal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	364	796		255	471			417			616	661
Starvation Cap Reductn	0	0		0	0			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.59	0.47		0.06	0.46			0.73			0.23	0.52
Intersection Summary												
Area Type: C	BD											
Cycle Length: 65												
Actuated Cycle Length: 6	60.5											
Natural Cycle: 65												
Control Type: Semi Act-I	Uncoor	ď										
Maximum v/c Ratio: 0.73	3											
Intersection Signal Delay	y: 16.4			1	ntersect	tion LOS	5: B					
Intersection Capacity Uti	ilizatior	n 63.8%		1	CU Leve	el of Ser	vice B					
Analysis Period (min) 15												

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

1 Ø2			
30.6 s	34.4 s		
₽ Ø6		₩ Ø8	
30.6 s	11.8 s	22.6 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Ti 2: School Rd/North	mings Rd (H ⁱ	wy 101) & Gi	bsons	Way (Hwy_1(01)	Tin	ning Pla	ın: Frida	2033 ay AM F	Base Peak Hr
	٦	-	•	4	+	×.	1	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	f,		٦	f,			4			4	1
Traffic Volume (vph)	158	104	193	12	156	11	186	49	4	19	76	246
Future Volume (vph)	158	104	193	12	156	11	186	49	4	19	76	246
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	70.0		0.0	55.0		0.0	0.0		0.0	0.0		180.0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.96	0.99		1.00	0.99			0.88			1.00	0.80
Frt		0.902			0.990			0.998				0.850
Flt Protected	0.950			0.950				0.962			0.990	
Satd. Flow (prot)	1509	1412	0	1509	1564	0	0	1524	0	0	1572	1350
Flt Permitted	0.385			0.524				0.689			0.910	
Satd. Flow (perm)	589	1412	0	831	1564	0	0	962	0	0	1445	1082
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		191			5			1				337
Link Speed (k/h)		50			50			30			50	
Link Distance (m)		375.6			381.6			659.4			821.0	
Travel Time (s)		27.0			27.5			79.1			59.1	
Confl. Peds. (#/hr)	35		1	2		35	101		2	2		101
Peak Hour Factor	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73	0.73
Shared Lane Traffic (%)											
Lane Group Flow (vph)	216	406	0	16	229	0	0	327	0	0	130	337
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		8	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	7.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
Total Split (s)	11.8	34.4		22.6	22.6		30.6	30.6		30.6	30.6	30.6
Total Split (%)	18.2%	52.9%		34.8%	34.8%		47.1%	47.1%		47.1%	47.1%	47.1%
Maximum Green (s)	7.3	29.9		18.1	18.1		26.1	26.1		26.1	26.1	26.1
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5			4.5			4.5	4.5
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	Max	None		None	None		Max	Max		None	None	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0		0	0		0	0	0
Act Effct Green (s)	25.6	25.6		13.8	13.8			26.2			26.2	26.2
Actuated g/C Ratio	0.42	0.42		0.23	0.23			0.43			0.43	0.43
v/c Ratio	0.60	0.58		0.09	0.64			0.79			0.21	0.51
Control Delay	19.7	10.3		19.0	29.4			33.4			12.9	5.0
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0
	-	-			-			-			-	

2: School Rd/North F	۲d (H۱	wy 101) & Gil	osons	Way (I	Hwy 10)1)	lin	ning Plai	n: Frida	ay AM P	eak Hr
	٦	-	\mathbf{r}	4	+	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	19.7	10.3		19.0	29.4			33.4			12.9	5.0
LOS	В	В		В	С			С			В	A
Approach Delay		13.6			28.8			33.4			7.2	
Approach LOS		В			С			С			А	
Queue Length 50th (m)	16.3	16.4		1.5	23.8			31.3			9.1	0.0
Queue Length 95th (m)	23.2	24.2		4.5	33.4			#56.1			16.7	5.7
Internal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	358	792		248	470			414			621	657
Starvation Cap Reductn	0	0		0	0			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.60	0.51		0.06	0.49			0.79			0.21	0.51
Intersection Summary												
Area Type: C	BD											
Cycle Length: 65												
Actuated Cycle Length: 6	8.06											
Natural Cycle: 65												
Control Type: Semi Act-l	Jncoor	d										
Maximum v/c Ratio: 0.79												
Intersection Signal Delay	r: 17.9			Ir	ntersect	ion LOS	6: B					
Intersection Capacity Uti	lization	64.2%		10	CU Leve	el of Ser	vice C					
Analysis Period (min) 15												
# 95th percentile volum	ne exce	eds cap	pacity, q	ueue m	ay be lo	onger.						
Queue shown is maxi	mum a	fter two	cycles.									

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

≪¶ø2	- 4 04		
30.6 s	34.4 s		
Ø6		₹Ø8	
30.6 s	11.8 s	22.6 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lane Croup EBL EBT EBR WBL WBT VBR NBL NBT NBR SBL SBT SBR Traffic Volume (vph) 168 104 193 12 156 15 186 54 4 24 87 268 Future Volume (vph) 168 104 193 12 156 15 186 54 4 24 87 268 Future Volume (vph) 168 104 193 12 156 15 186 54 4 24 87 268 Ideal Flow (vphpl) 1800 100 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SBT SBR Lane Configurations 1 1 156 156 186 54 4 24 87 268 Future Volume (vph) 168 104 193 12 156 15 186 54 4 24 87 268 Ideal Flow (vphpl) 1800 100 1.00 1.00
Lane Configurations 1
Traffic Volume (vph) 168 104 193 12 156 15 186 54 4 24 87 268 Future Volume (vph) 1680 1800 100 1.00<
Future Volume (vph) 168 104 193 12 156 15 186 54 4 24 87 268 Ideal Flow (vphpl) 1800 100 1.00
Ideal Flow (vphpl) 1800 100 1.00 1.00
Storage Length (m) 70.0 0.0 55.0 0.0 0.0 0.0 0.0 180.0 Storage Lanes 1 0 1 0 0 0 1 1 0 1 0 0 0 1 1 1 0 0 0 0 1 1 1 0 0 0 0 1 1 0 0 0 0 0 1 0 0 0 0 1 0 <t< td=""></t<>
Storage Lanes 1 0 1 0 0 0 1 Taper Length (m) 7.5
Taper Length (m) 7.5 7.5 7.5 7.5 Lane Util. Factor 1.00 0.89 1.00 0.89 Fit Protected 0.950 0.987 0.998 0.983 0.898 0.889 Satd. Flow (prot) 1509 1412 0 1556 0 0 156 0 0.894 0.889 Satd. Flow (perm) 577 1412 0 831 1556 0 0 956 0 0 1419 1082 Satd. Flow (perm) 577 1412 0 831 1556 0 0 956 0 0 1419 1082 Satd. Flow (RTOR) 190 8 1 1 2 2 101 2 2 <td< td=""></td<>
Lane Util. Factor 1.00 0.80 Fit Protected 0.950 0.963 0.963 0.989 0.894 0
Ped Bike Factor 0.96 0.99 1.00 0.99 0.89 1.00 0.80 Fit 0.902 0.987 0.998 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.850 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.850 0.850 0.850 0.850 0.850 0.894 0.894 0.854 0.850 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 0.894 1.82 367 1.82 Yes
Frit 0.902 0.987 0.998 0.850 Fit Protected 0.950 0.950 0.963 0.989 Satd. Flow (prot) 1509 1412 0 1509 0 0.1526 0 0 1571 1350 Fit Permitted 0.377 0.524 0.680 0.894 0.894 Satd. Flow (perm) 577 1412 0 831 1556 0 0 956 0 0 1419 1082 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 190 8 1 367 1082 1082 1082 1082 101 2 101 1082 101 100
Fit Protected 0.950 0.963 0.989 Satd. Flow (prot) 1509 1412 0 1509 1556 0 0 1526 0 0 1571 1350 Fit Permitted 0.377 0.524 0.680 0.894 0.894 Satd. Flow (perm) 577 1412 0 831 1556 0 0 956 0 0 1419 1082 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Yes Satd. Flow (Protected (k/h) 367 Link Speed (k/h) 50 50 381.6 659.4 821.0 101 Travel Time (s) 27.0 27.5 79.1 59.1 101 Peak Hour Factor 0.73
Satd. Flow (prot) 1509 1412 0 1509 1556 0 0 1526 0 0 1571 1350 Fit Permitted 0.377 0.524 0.680 0.880 0.894 Satd. Flow (perm) 577 1412 0 831 1556 0 956 0 0 1419 1082 Right Turn on Red Yes
Fit Permitted 0.377 0.524 0.680 0.894 Satd. Flow (perm) 577 1412 0 831 1556 0 0 956 0 0 1419 1082 Right Turn on Red Yes Yes Yes Yes Yes Yes Yes Satd. Flow (RTOR) 190 8 1 367 101 367 Link Speed (k/h) 50 50 30 50 50 50 101 2 2 101 Confl. Peds. (#/hr) 35 1 2 35 101 2 2 101 Peak Hour Factor 0.73 <td< td=""></td<>
Satd. Flow (perm) 577 1412 0 831 1556 0 0 956 0 0 1419 1082 Right Turn on Red Yes
Right Turn on Red Yes Yes Yes Yes Yes Satd. Flow (RTOR) 190 8 1 367 Link Speed (k/h) 50 50 30 50 Link Speed (k/h) 375.6 381.6 659.4 821.0 Travel Time (s) 27.0 27.5 79.1 2 2 101 Peak Hour Factor 0.73
Satat. Flow (RTOR) 190 8 1 367 Link Speed (k/h) 50 50 30 50 Link Distance (m) 375.6 381.6 659.4 821.0 Travel Time (s) 27.0 27.5 79.1 59.1 Confl. Peds. (#/hr) 35 1 2 35 101 2 2 101 Peak Hour Factor 0.73
$ \begin{array}{c c c c c c c c c c c c c c c c c c c $
Link Distance (m) 375.6 381.6 659.4 821.0 Travel Time (s) 27.0 27.5 79.1 59.1 Confi. Peds. (#/hr) 35 1 2 35 101 2 2 101 Peak Hour Factor 0.73
$\begin{array}{c c c c c c c c c c c c c c c c c c c $
Confl. Peds. (#/hr) 35 1 2 35 101 2 2 101 Peak Hour Factor 0.73 0.74 6
Peak Hour Factor 0.73
Shared Lane Traffic (%) Lane Group Flow (vph) 230 406 0 16 235 0 0 334 0 0 152 367 Turn Type pm+pt NA Perm Perm Parm NA Perm NA Perm NA Perm Perm Parm
Lane Group Flow (vph) 230 406 0 16 235 0 0 334 0 0 152 367 Turn Type pm+pt NA Perm
Turn Type pm+pt NA Perm Perm NA Perm NA Perm Perm NA Perm NA Perm NA Perm Perm NA Perm Perm NA Perm NA Perm NA Perm NA Perm NA Perm NA Perm
Protected Phases 7 4 8 2 6 Permitted Phases 4 8 2 6 6 Detector Phase 7 4 8 8 2 6 6 Switch Phase 7 4 8 8 2 2 6 6 Switch Phase 7 10.0 10.0 10.0 10.0 10.0 10.0 10.0 Minimum Initial (s) 7.0 10.0 </td
Permitted Phases 4 8 2 6 6 Detector Phase 7 4 8 8 2 2 6 6 6 Switch Phase 7 4 8 8 2 2 6 6 6 Minimum Initial (s) 7.0 10.0
Detector Phase 7 4 8 8 2 2 6 6 6 Switch Phase Minimum Initial (s) 7.0 10.0 <
Switch Phase Minimum Initial (s) 7.0 10
Minimum Initial (s) 7.0 10.0
Minimum Split (s) 11.5 22.5
Total Split (s) 11.8 34.3 22.5 22.5 30.7
Total Split (%) 18.2% 52.8% 34.6% 34.6% 47.2% 47.2% 47.2% 47.2% 47.2%
Maximum Green (s) 7.3 29.8 18.0 18.0 26.2 26.2 26.2 26.2 26.2 26.2
Yellow Time (s) 3.5
All-Red Time (s) 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0
Lost Time Adjust (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0
Total Lost Time (s) 4.5
Lead/Lag Lag Lag
Lead-Lag Optimize? Yes Yes Yes
Vehicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0
Recall Mode Max None None None Max Max None None None
Walk Time (s) 7.0 <
Flash Dont Walk (s) 11.0 </td
Pedestrian Calls (#/hr) 0 0 0 0 0 0 0 0 0
Act Effct Green (s) 25.7 25.7 13.9 13.9 26.3 26.3 26.3
Actuated g/C Ratio 0.42 0.42 0.23 0.23 0.43 0.43 0.43
v/c Ratio 0.65 0.58 0.08 0.65 0.81 0.25 0.54
Control Delay 21.9 10.4 19.0 29.7 35.6 13.4 5.2
Queue Delay 0.0 <th< td=""></th<>

		wy 101	/ 0 01	000110	way (i	iwy ic	, , ,	-			.,	
	≯	-	\mathbf{F}	1	+	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	21.9	10.4		19.0	29.7			35.6			13.4	5.2
LOS	С	В		В	С			D			В	A
Approach Delay		14.5			29.0			35.6			7.6	
Approach LOS		В			С			D			А	
Queue Length 50th (m)	17.6	16.6		1.5	24.2			32.8			10.9	0.0
Queue Length 95th (m)	24.8	24.4		4.6	34.1			#58.2			19.1	5.6
Internal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	355	788		245	465			411			610	674
Starvation Cap Reductn	0	0		0	0			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.65	0.52		0.07	0.51			0.81			0.25	0.54
Intersection Summary												
Area Type: Cl	BD											
Cycle Length: 65												
Actuated Cycle Length: 6	61											
Natural Cycle: 65												
Control Type: Semi Act-L	Jncoor	ď										
Maximum v/c Ratio: 0.81												
Intersection Signal Delay	r: 18.6			h	ntersect	ion LOS	: B					
Intersection Capacity Util	lizatior	n 66.2%		10	CU Leve	el of Ser	vice C					
Analysis Period (min) 15												
# 95th percentile volum	ne exc	eeds cap	acity, q	queue m	ay be lo	nger.						
Queue shown is maxi	mum a	after two	cycles.									

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

1 Ø2			
30.7 s	34.3 s		
Ø6		₩ Ø8	
30.7 s	11.8 s	22.5 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Timings 20 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101) Timing Plan: Friday Plan: Friday Plan:									2023 ay PM F	Base Peak Hr		
	٨	+	7	¥	Ļ	•	◄	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	el el		2	et e			\$			ا	1
Traffic Volume (vph)	229	181	205	11	165	33	184	45	6	16	71	280
Future Volume (vph)	229	181	205	11	165	33	184	45	6	16	71	280
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	70.0		0.0	55.0		0.0	0.0		0.0	0.0		180.0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95	0.97		0.98	0.98			0.85			1.00	0.76
Frt		0.920			0.975			0.996				0.850
Flt Protected	0.950			0.950				0.962			0.991	
Satd. Flow (prot)	1509	1420	0	1509	1522	0	0	1520	0	0	1574	1350
Flt Permitted	0.374			0.482				0.700			0.921	
Satd. Flow (perm)	565	1420	0	753	1522	0	0	943	0	0	1460	1032
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		134			17			3				359
Link Speed (k/h)		50			50			30			50	
Link Distance (m)		375.6			381.6			659.4			821.0	
Travel Time (s)		27.0			27.5			79.1			59.1	
Confl. Peds. (#/hr)	52		20	20		52	132		11	11		132
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Shared Lane Traffic (%)					_	_		_			
Lane Group Flow (vph)	294	495	0	14	254	0	0	302	0	0	112	359
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4			8			2			6	-
Permitted Phases	4			8			2			6		6
Detector Phase	1	4		8	8		2	2		6	6	6
Switch Phase	7.0	40.0		40.0	40.0		40.0	10.0		40.0	40.0	40.0
Minimum Initial (s)	7.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
Total Split (S)	11.0	34.1		22.5	22.5		25.9	25.9		25.9	25.9	25.9
Total Split (%)	19.3%	50.8%		37.5%	37.5%		43.2%	43.2%		43.2%	43.2%	43.2%
Maximum Green (s)	7.1	29.0		18.0	18.0		21.4	21.4		21.4	21.4	21.4
All Red Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (S)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Total Lost Time (a)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Lood/Log	4.5	4.5		4.5	4.5			4.5			4.5	4.5
Leau/Lag	Voo			Lag	Lag							
Vehicle Extension (c)	2.0	2.0		2.0	2.0		2.0	2.0		20	2.0	2.0
Peopli Mode	J.U Mov	J.U Nono		Jone None	Jone		J.U Mox	J.U Mox		Jone None	None	S.U Nono
	IVIAX	7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/br)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	0
Act Effet Green (s)	25.4	25.4		13 0	13.9		0	21.5		0	21.5	21 5
Actuated a/C Ratio	20.4	20.4		0.25	0.25			21.0			21.0	0.38
v/c Ratio	0.40	0.40		0.25	0.25			0.30			0.00	0.58
Control Delay	28.2	14 3		16.5	26.2			40.4			13.8	6.4
	20.2	0.0		0.0	20.2			40.4			10.0	0.4
Quede Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0

2: School Rd/North	nings Rd (H	wy 101) & Gi	bsons	Way (I	Hwy 10	1)	2023 Ba Timing Plan: Friday PM Peak						
	٦	-	\mathbf{r}	4	←	•	•	t	۲	1	ŧ	~		
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR		
Total Delay	28.2	14.3		16.5	26.2			40.4			13.8	6.4		
LOS	С	В		В	С			D			В	A		
Approach Delay		19.5			25.6			40.4			8.1			
Approach LOS		В			С			D			А			
Queue Length 50th (m)	19.8	27.3		1.1	22.5			27.7			7.7	0.0		
Queue Length 95th (m)	#30.7	41.7		4.1	35.2			#59.9			16.1	8.8		
Internal Link Dist (m)		351.6			357.6			635.4			797.0			
Turn Bay Length (m)	70.0			55.0								180.0		
Base Capacity (vph)	377	816		242	502			363			560	617		
Starvation Cap Reductn	0	0		0	0			0			0	0		
Spillback Cap Reductn	0	0		0	0			0			0	0		
Storage Cap Reductn	0	0		0	0			0			0	0		
Reduced v/c Ratio	0.78	0.61		0.06	0.51			0.83			0.20	0.58		
Intersection Summary														
Area Type: C	BD													
Cycle Length: 60														
Actuated Cycle Length:	55.9													
Natural Cycle: 60														
Control Type: Semi Act-	Uncoor	ď												
Maximum v/c Ratio: 0.83	3													
Intersection Signal Dela	y: 20.9			I	ntersect	ion LOS	: C							
Intersection Capacity Ut	ilizatior	n 68.3%		I	CU Leve	el of Ser	vice C							
Analysis Period (min) 15	5													
# 95th percentile volur	ne exc	eeds cap	pacity, c	queue n	nay be lo	onger.								
Queue shown is max	timum a	after two	cycles.											

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

1 Ø2	A_04		
25.9 s	34.1 s		
	✓ Ø7	✓ Ø8	
25.9 s	11.6 s	22.5 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Timings 2024 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101) Timing Plan: Friday PM										2028 ay PM F	Base Peak Hr	
	٦	+	7	¥	Ļ	•	◄	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	4		٦	f,			4			4	1
Traffic Volume (vph)	266	209	238	12	191	36	214	50	7	18	78	326
Future Volume (vph)	266	209	238	12	191	36	214	50	7	18	78	326
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	70.0		0.0	55.0		0.0	0.0		0.0	0.0		180.0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95	0.97		0.98	0.98			0.84			1.00	0.75
Frt		0.920			0.976			0.996				0.850
Flt Protected	0.950			0.950				0.962			0.991	
Satd. Flow (prot)	1509	1418	0	1509	1523	0	0	1520	0	0	1574	1350
Flt Permitted	0.314			0.449				0.691			0.913	
Satd. Flow (perm)	475	1418	0	701	1523	0	0	919	0	0	1447	1008
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		122			14			2				418
Link Speed (k/h)		50			50			30			50	
Link Distance (m)		375.6			381.6			659.4			821.0	
Travel Time (s)		27.0			27.5			79.1			59.1	
Confl. Peds. (#/hr)	52		20	20		52	132		11	11		132
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Shared Lane Traffic (%)											
Lane Group Flow (vph)	341	573	0	15	291	0	0	347	0	0	123	418
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		8	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	7.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
Total Split (s)	13.4	35.9		22.5	22.5		29.1	29.1		29.1	29.1	29.1
Total Split (%)	20.6%	55.2%		34.6%	34.6%		44.8%	44.8%		44.8%	44.8%	44.8%
Maximum Green (s)	8.9	31.4		18.0	18.0		24.6	24.6		24.6	24.6	24.6
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5			4.5			4.5	4.5
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	Max	None		None	None		Max	Max		None	None	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0		0	0		0	0	0
Act Effct Green (s)	28.6	28.6		15.2	15.2			24.7			24.7	24.7
Actuated g/C Ratio	0.46	0.46		0.24	0.24			0.40			0.40	0.40
v/c Ratio	0.93	0.80		0.09	0.76			0.95			0.22	0.64
Control Delay	49.8	21.3		19.1	35.1			60.4			14.7	7.1
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0

										、		,
	•	-	\mathbf{r}	•	-	~	1	Ť		>	ŧ	*
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	49.8	21.3		19.1	35.1			60.4			14.7	7.1
OS	D	С		В	D			E			В	A
Approach Delay		32.0			34.3			60.4			8.8	
Approach LOS		С			С			E			А	
Queue Length 50th (m)	27.1	43.7		1.4	31.0			41.0			10.0	0.0
Queue Length 95th (m)	#50.3	61.8		4.7	45.8			#75.2			17.9	8.8
nternal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	366	776		203	450			365			572	651
Starvation Cap Reductn	0	0		0	0			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.93	0.74		0.07	0.65			0.95			0.22	0.64
Intersection Summary												
Area Type: C	BD											
Cycle Length: 65												
Actuated Cycle Length:	62.3											
Natural Cycle: 65												
Control Type: Semi Act-	Uncoor	d										
Maximum v/c Ratio: 0.95	5											
Intersection Signal Delay	y: 31.0			h	ntersect	ion LOS	: C					
Intersection Capacity Ut	ilizatior	74.8%		l.	CU Leve	el of Serv	vice D					
Analysis Period (min) 15												
# 95th percentile volum	ne exce	eeds cap	acity, c	lueue m	nay be lo	nger.						
Queue shown is max	imum a	fter two	cvcles.									

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

1 ø2	<u></u> ⊗4
29.1 s	35.9 s
↓ Ø6	▶ ₀₇ ♥ ₀₈
29.1s	13.4 s 22.5 s

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Timings 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)									ning Pla	202 an: Frida	8 Base ay PM F	e+Site ^P eak Hr
	٦	→	\mathbf{r}	¥	+	•	•	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	1	f,		<u>۲</u>	eî 👘			4			4	1
Traffic Volume (vph)	283	209	238	12	191	42	214	56	7	23	85	340
Future Volume (vph)	283	209	238	12	191	42	214	56	7	23	85	340
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	70.0		0.0	55.0		0.0	0.0		0.0	0.0		180.0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95	0.97		0.98	0.98			0.84			1.00	0.73
Frt		0.920			0.973			0.997				0.850
Flt Protected	0.950			0.950				0.963			0.990	
Satd. Flow (prot)	1509	1416	0	1509	1512	0	0	1523	0	0	1572	1350
Flt Permitted	0.287			0.449				0.686			0.895	
Satd. Flow (perm)	434	1416	0	701	1512	0	0	908	0	0	1418	983
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		113			15			2				436
Link Speed (k/h)		50			50			30			50	
Link Distance (m)		375.6			381.6			659.4			821.0	
Travel Time (s)		27.0			27.5			79.1			59.1	
Confl. Peds. (#/hr)	52		20	20		52	132		11	11		132
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Shared Lane Traffic (%)											
Lane Group Flow (vph)	363	573	0	15	299	0	0	355	0	0	138	436
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		8	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	7.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
Total Split (s)	15.7	38.2		22.5	22.5		31.8	31.8		31.8	31.8	31.8
Total Split (%)	22.4%	54.6%		32.1%	32.1%		45.4%	45.4%		45.4%	45.4%	45.4%
Maximum Green (s)	11.2	33.7		18.0	18.0		27.3	27.3		27.3	27.3	27.3
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5			4.5			4.5	4.5
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	Max	None		None	None		Max	Max		None	None	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0		0	0		0	0	0
Act Effct Green (s)	31.8	31.8		16.1	16.1			27.4		•	27.4	27.4
Actuated g/C Ratio	0.47	0.47		0.24	0.24			0.40			0.40	0.40
v/c Ratio	0.96	0.79		0.09	0.81			0.97			0.24	0.67
Control Delay	55.0	22.2		21.5	42.5			65.8			15.7	7.6
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0
y	0.0	0.0		0.0	0.0			0.0			0.0	

Lanes, Volumes, Tir 2: School Rd/North	nings Rd (H	wy 101) & Gi	bsons	Way (I	Hwy 10)1)	Tin	ning Pla	202 n: Frida	8 Base ay PM P	+Site eak Hr
	≯	+	*	*	Ļ	•	•	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	55.0	22.2		21.5	42.5			65.8			15.7	7.6
LOS	E	С		С	D			E			В	A
Approach Delay		34.9			41.5			65.8			9.6	
Approach LOS		С			D			E			А	
Queue Length 50th (m)	32.2	49.5		1.6	36.0			47.3			12.5	0.0
Queue Length 95th (m)	#57.8	67.7		5.3	51.8			#80.6			20.8	8.7
Internal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	379	758		185	410			365			569	655
Starvation Cap Reductn	0	0		0	0			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.96	0.76		0.08	0.73			0.97			0.24	0.67
Intersection Summary												
Area Type: C	BD											
Cycle Length: 70												
Actuated Cycle Length:	68.2											
Natural Cycle: 70												
Control Type: Semi Act-	Uncoor	ď										
Maximum v/c Ratio: 0.9	7											
Intersection Signal Dela	y: 34.2			1	ntersect	ion LOS	: C					
Intersection Capacity Ut	ilizatior	n 76.1%			CU Leve	el of Ser	vice D					
Analysis Period (min) 15	5											
# 95th percentile volur	ne exc	eeds cap	bacity, c	queue n	nay be lo	onger.						
Queue shown is max	timum a	after two	cycles.									

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

↑ Ø2	A_04		
31.8 s	38.2 s		
₽ 206		₹_Ø8	
31.8 s	15.7 s	22.5 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Timings2032: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)Timing Plan: Friday PM									2033 ay PM F	Base Peak Hr		
	٦	+	7	¥	Ļ	•	◄	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	٦	ĥ		ሻ	f,			4			4	1
Traffic Volume (vph)	289	227	258	13	207	40	233	54	7	19	85	354
Future Volume (vph)	289	227	258	13	207	40	233	54	7	19	85	354
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	70.0		0.0	55.0		0.0	0.0		0.0	0.0		180.0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95	0.97		0.98	0.98			0.81			1.00	0.69
Frt		0.920			0.976			0.997				0.850
Flt Protected	0.950			0.950				0.962			0.991	
Satd. Flow (prot)	1509	1412	0	1509	1517	0	0	1522	0	0	1574	1350
Flt Permitted	0.229			0.429				0.684			0.910	
Satd. Flow (perm)	347	1412	0	669	1517	0	0	873	0	0	1443	935
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		96			11			2				454
Link Speed (k/h)		50			50			30			50	
Link Distance (m)		375.6			381.6			659.4			821.0	
Travel Time (s)		27.0			27.5			79.1			59.1	
Confl. Peds. (#/hr)	52		20	20		52	132		11	11		132
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Shared Lane Traffic (%)											
Lane Group Flow (vph)	371	622	0	17	316	0	0	377	0	0	133	454
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		8	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	7.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
Total Split (s)	19.2	41.7		22.5	22.5		38.3	38.3		38.3	38.3	38.3
Total Split (%)	24.0%	52.1%		28.1%	28.1%		47.9%	47.9%		47.9%	47.9%	47.9%
Maximum Green (s)	14.7	37.2		18.0	18.0		33.8	33.8		33.8	33.8	33.8
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5			4.5			4.5	4.5
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	Max	None		None	None		Max	Max		None	None	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0		0	0		0	0	0
Act Effct Green (s)	36.8	36.8		17.6	17.6			33.8			33.8	33.8
Actuated g/C Ratio	0.46	0.46		0.22	0.22			0.42			0.42	0.42
v/c Ratio	0.99	0.88		0.12	0.92			1.02			0.22	0.69
Control Delay	65.6	33.2		27.1	63.7			77.5			15.9	8.1
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0
	-	-			-			-			-	

	≯	-	\mathbf{i}	1	+	•	•	†	/	1	Ļ	-
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	65.6	33.2		27.1	63.7			77.5			15.9	8.1
LOS	E	С		С	E			E			В	A
Approach Delay		45.3			61.9			77.5			9.9	
Approach LOS		D			E			E			А	
Queue Length 50th (m)	41.9	74.6		2.2	47.8			~61.1			13.1	0.0
Queue Length 95th (m)	#74.1	95.6		6.4	#74.7			#93.9			21.1	8.2
Internal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	374	710		151	351			371			612	658
Starvation Cap Reductn	0	0		0	0			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.99	0.88		0.11	0.90			1.02			0.22	0.69
Intersection Summary												1
Area Type: C	BD											
Cycle Length: 80												
Actuated Cycle Length: 3	79.6											
Natural Cycle: 70												
Control Type: Semi Act-I	Uncoor	d										
Maximum v/c Ratio: 1.02	2											
Intersection Signal Delay	/: 43.9			1	ntersect	ion LOS	: D					
Intersection Capacity Uti	lizatior	79.0%			CU Leve	el of Ser	vice D					
Analysis Period (min) 15												
 Volume exceeds cap 	acity, o	queue is	theore	tically ir	nfinite.							
Queue shown is max	imum a	fter two	cycles.									
# 95th percentile volume exceeds capacity, queue may be longer.												

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

↑ Ø2	A 24	
38.3 s	41.7 s	
↓ Ø6		₩ Ø8
38.3 s	19.2 s	22.5 s

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Ti 2: School Rd/North	mings Rd (H	wy 101) & Gi	bsons	Way (Hwy 10	01)	Tin	ning Pla	203 an: Frida	3 Base ay PM F	e+Site ^{Peak Hr}
	٦	-	\mathbf{r}	¥	+	•	•	t	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	۲	f,		۲	ĥ			4			4	1
Traffic Volume (vph)	306	227	258	13	207	46	233	60	7	24	92	368
Future Volume (vph)	306	227	258	13	207	46	233	60	7	24	92	368
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	70.0		0.0	55.0		0.0	0.0		0.0	0.0		180.0
Storage Lanes	1		0	1		0	0		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95	0.97		0.98	0.98			0.81			1.00	0.69
Frt		0.920			0.973			0.997				0.850
Flt Protected	0.950			0.950				0.963			0.990	
Satd. Flow (prot)	1509	1412	0	1509	1508	0	0	1523	0	0	1572	1350
Flt Permitted	0.220			0.429				0.678			0.887	
Satd. Flow (perm)	333	1412	0	669	1508	0	0	874	0	0	1406	935
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		99			13			2				472
Link Speed (k/h)		50			50			30			50	
Link Distance (m)		375.6			381.6			659.4			821.0	
Travel Time (s)		27.0			27.5			79.1			59.1	
Confl. Peds. (#/hr)	52		20	20		52	132		11	11		132
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Shared Lane Traffic (%)											
Lane Group Flow (vph)	392	622	0	17	324	0	0	385	0	0	149	472
Turn Type	pm+pt	NA		Perm	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4			8			2			6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		8	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	7.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
Total Split (s)	20.5	43.0		22.5	22.5		37.0	37.0		37.0	37.0	37.0
Total Split (%)	25.6%	53.8%		28.1%	28.1%		46.3%	46.3%		46.3%	46.3%	46.3%
Maximum Green (s)	16.0	38.5		18.0	18.0		32.5	32.5		32.5	32.5	32.5
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0			0.0			0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5			4.5			4.5	4.5
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	Max	None		None	None		Max	Max		None	None	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0		0	0		0	0	0
Act Effct Green (s)	38.3	38.3		17.8	17.8		•	32.5		•	32.5	32.5
Actuated g/C Ratio	0.48	0.48		0.22	0.22			0.41			0.41	0.41
v/c Ratio	0.99	0.85		0.11	0.93			1.08			0.26	0.72
Control Delay	64.7	29.0		27.1	66.2			97.3			17.3	8.9
Queue Delay	0.0	0.0		0.0	0.0			0.0			0.0	0.0
y	0.0	0.0		0.0	0.0			0.0			0.0	3.0

	٠	-	\mathbf{F}	1	+	•	1	1	1	1	Ŧ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	64.7	29.0		27.1	66.2			97.3			17.3	8.9
LOS	E	С		С	E			F			В	A
Approach Delay		42.8			64.3			97.3			10.9	
Approach LOS		D			E			F			В	
Queue Length 50th (m)	45.8	71.4		2.2	49.1			~70.0			15.4	0.0
Queue Length 95th (m)	#78.1	91.6		6.4	#77.6			#99.5			24.4	8.4
Internal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	395	731		150	350			357			572	660
Starvation Cap Reductn	0	0		0	0			0			0	0
Spillback Cap Reductn	0	0		0	0			0			0	0
Storage Cap Reductn	0	0		0	0			0			0	0
Reduced v/c Ratio	0.99	0.85		0.11	0.93			1.08			0.26	0.72
ntersection Summary												
Area Type: C	BD											
Cycle Length: 80												
Actuated Cycle Length: 7	79.8											
Natural Cycle: 75												
Control Type: Semi Act-l	Jncoor	d										
Maximum v/c Ratio: 1.08	;											
Intersection Signal Delay	/: 46.4			h	ntersect	on LOS	: D					
Intersection Capacity Uti	lization	80.9%		l	CU Leve	l of Ser	vice D					
Analysis Period (min) 15												
 Volume exceeds cap 	acity, d	queue is	theoret	ically in	ifinite.							
Queue shown is maxi	imum a	fter two	cycles.									
# 95th percentile volum	ne exce	eds cap	acity, q	ueue m	nay be lo	nger.						

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

<\$ ₫ ø2	A 24	
37 s	43 s	
	<u></u> <i>▶</i> _{Ø7}	₩ Ø8
37 s	20.5 s	22.5 s

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

Lanes, Volumes, Ti 2: School Rd/North	mings Rd (H	wy 101) & Gi	bsons	Way (Hwy 10	01)	Tin	2033 ning Pla	Base an: Frida	(NBLT ay PM F	lane) eak Hr
	≯	+	7	4	Ļ	•	◄	1	1	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations	<u>۳</u>	¢Î,		۲	4		<u>۲</u>	eî 👘			4	1
Traffic Volume (vph)	289	227	258	13	207	40	233	54	7	19	85	354
Future Volume (vph)	289	227	258	13	207	40	233	54	7	19	85	354
Ideal Flow (vphpl)	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800	1800
Storage Length (m)	70.0		0.0	55.0		0.0	0.0		50.0	0.0		180.0
Storage Lanes	1		0	1		0	1		1	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.95	0.97		0.98	0.98		0.77	1.00			1.00	0.71
Frt		0.920			0.976			0.983				0.850
Flt Protected	0.950			0.950			0.950				0.991	
Satd. Flow (prot)	1509	1414	0	1509	1519	0	1509	1554	0	0	1574	1350
Flt Permitted	0.255		_	0.429		_	0.672		_	_	0.953	
Satd. Flow (perm)	386	1414	0	670	1519	0	827	1554	0	0	1508	964
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		109			12			9			= 0	454
Link Speed (k/h)		50			50			30			50	
Link Distance (m)		375.6			381.6			659.4			821.0	
Travel Time (s)		27.0			27.5	= 0	100	79.1			59.1	100
Confl. Peds. (#/hr)	52		20	20		52	132		11	11		132
Peak Hour Factor	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78	0.78
Shared Lane Tranic (%)	COO	0	47	040	0	000	70	0	0	400	45.4
Lane Group Flow (vpn)	3/1	022	0	17 Dorm	310	0	299 Dorm	/8	0	Dorm	133	454 Dorm
Turri Type	pm+pt	NA 4		Penn	INA		Perm	INA		Penn	NA C	Penn
Protected Phases	1	4		0	0		2	2		6	0	G
Permilled Phases	4	4		0	0		2	2		6	6	6
Switch Phase	1	4		0	0		2	2		0	0	0
Minimum Initial (c)	7.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	10.0
Minimum Split (s)	11.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	22.5
Total Split (s)	18.5	41.0		22.5	22.5		33.0	33.0		33.0	33.0	33.0
Total Split (%)	25.0%	55.4%		30.4%	30.4%		44.6%	44.6%		44.6%	44.6%	44.6%
Maximum Green (s)	14.0	36.5		18.0	18.0		28.5	28.5		28.5	28.5	28.5
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)	0.0	0.0		0.0	0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)	4.5	4.5		4.5	4.5		4.5	4.5			4.5	4.5
Lead/Lag	Lead			Lag	Lag							
Lead-Lag Optimize?	Yes			Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	Max	None		None	None		Max	Max		None	None	None
Walk Time (s)		7.0		7.0	7.0		7.0	7.0		7.0	7.0	7.0
Flash Dont Walk (s)		11.0		11.0	11.0		11.0	11.0		11.0	11.0	11.0
Pedestrian Calls (#/hr)		0		0	0		0	0		0	0	0
Act Effct Green (s)	35.6	35.6		17.1	17.1		28.5	28.5			28.5	28.5
Actuated g/C Ratio	0.49	0.49		0.23	0.23		0.39	0.39			0.39	0.39
v/c Ratio	0.92	0.84		0.11	0.87		0.93	0.13			0.23	0.70
Control Delay	46.5	25.6		23.9	51.6		60.5	14.1			16.6	8.5
Queue Delay	0.0	0.0		0.0	0.0		0.0	0.0			0.0	0.0
·		-		-	-		-	-			-	

Lanes, Volumes, Tir 2: School Rd/North I	School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)											lane) eak H
	≯	-	\mathbf{F}	•	+	•	1	Ť	۲	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	46.5	25.6		23.9	51.6		60.5	14.1			16.6	8.5
LOS	D	С		С	D		E	В			В	A
Approach Delay		33.4			50.2			50.9			10.3	
Approach LOS		С			D			D			В	
Queue Length 50th (m)	34.5	61.5		1.9	42.5		41.2	6.4			12.8	0.0
Queue Length 95th (m)	#62.4	81.3		6.0	#66.2		#71.2	12.6			21.1	8.7
Internal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	402	760		164	383		322	612			588	653
Starvation Cap Reductn	0	0		0	0		0	0			0	0
Spillback Cap Reductn	0	0		0	0		0	0			0	0
Storage Cap Reductn	0	0		0	0		0	0			0	0
Reduced v/c Ratio	0.92	0.82		0.10	0.83		0.93	0.13			0.23	0.70
Intersection Summary												
Area Type: C	BD											
Cycle Length: 74												
Actuated Cycle Length:	73.1											
Natural Cycle: 65												
Control Type: Semi Act-	Uncoor	ď										
Maximum v/c Ratio: 0.93	3											
Intersection Signal Delay	y: 32.8			1	ntersect	ion LOS	S: C					
Intersection Capacity Ut	ilizatior	n 75.1%			CU Leve	el of Sei	vice D					
Analysis Period (min) 15	5											
# 95th percentile volur	ne exc	eeds cap	bacity, c	lueue n	nay be lo	onger.						
Queue shown is max	imum a	after two	cycles.									

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

1 Ø2	-04		
33 s	41 s		
		₹_Ø8	
33 s	18.5 s	22.5 s	

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.

$\swarrow \rightarrow \rightarrow \checkmark \checkmark \leftarrow \checkmark \uparrow \checkmark \checkmark \downarrow$ Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SI	~
Lane Group EBL EBT EBR WBL WBT WBR NBL NBT NBR SBL SI	
	T SBR
Lane Configurations 🎽 🏠 🎽 🎁	A 7
Traffic Volume (vph) 306 227 258 13 207 46 233 60 7 24	2 368
Future Volume (vph) 306 227 258 13 207 46 233 60 7 24	2 368
Ideal Flow (vphpl) 1800 1800 1800 1800 1800 1800 1800 180	D 1800
Storage Length (m) 70.0 0.0 55.0 0.0 0.0 50.0 0.0	180.0
Storage Lanes 1 0 1 0 1 1 0	1
Taper Length (m) 7.5 7.5 7.5	
Lane Util. Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0	0 1.00
Ped Bike Factor 0.96 0.97 0.98 0.98 0.79 1.00 1.	0.73
Frt 0.920 0.973 0.984	0.850
Fit Protected 0.950 0.950 0.950 0.9	C
Satd. Flow (prot) 1509 1416 0 1509 1512 0 1509 1556 0 0 15	2 1350
Flt Permitted 0.262 0.429 0.662 0.9	9
Satd, Flow (perm) 398 1416 0 670 1512 0 832 1556 0 0 14	5 983
Right Turn on Red Yes Yes Yes	Yes
Satd. Flow (RTOR) 117 15 9	472
Link Speed (k/h) 50 50 30)
Link Distance (m) 375.6 381.6 659.4 821	-)
Travel Time (c) 27.0 27.5 79.1 55	1
Confl Peds ($\#$)r) 52 20 20 52 132 11 11	132
Peak Hour Factor 078 078 078 078 078 078 078 078 078 078	8 0 78
Shared and Traffic (%)	5 0.10
Lane Group Flow (vph) 392 622 0 17 324 0 299 86 0 0 1	a 472
Turn Type mt+t NA Perm NA Perm NA Perm NA Perm	A Perm
Protected Phases 7 A 8 2	8
Parmitted Phases A 8 2 6	6
	6 6
Switch Phase	5 0
Minimum Initial (c) 70,100, 100, 100, 100, 100, 100, 100, 1	10.0
Minimum Split (s) 115 225 225 225 225 225 225 225 225	5 22 5
Total Split (s) 17.0 30.5 22.5 22.5 22.5 30.5 30.5 30.5 30.5 30.5 30.5 30.5 30	5 30.5
Total Split (0) 17.0 59.5 22.5 30.5 30.5 30.5 30.5 Total Split (0) 24.20/ 56.40/ 22.6/ 42.60/ 4	/ 12 60/
Total Spin (%) 24.3% 30.4% 32.1% 32.1% 43.0% 43.0% 43.0% 43.0% 43.0%	0 43.0%
Malauri Green (s) 12.5 35.0 16.0 16.0 20.0 20.0 20.0 20.0 20.0 20.0 20.0 2	J 20.0
Tellow life (s) $3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 3.5 $	5 3.5
All-red limit (s) $1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 1.0 $	
	5 0.0
Total Lost Time (s) 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5 4.5	5 4.5
Lead/Lag Lead Lag Lag	
Lead-Lag Optimize ? Yes Yes Yes	
Venicle Extension (s) 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0 3.0	J 3.0
Recall Mode Max None None None Max Max None No	e None
vvaik Time (s) 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0 7.0	J 7.0
Fiash Dont waik (s) 11.0 11.0 11.0 11.0 11.0 11.0 11.0	J 11.0
Pedestrian Calls (#/hr) 0 0 0 0 0 0 0	0 0
Act Effect Green (s) 33.8 33.8 16.8 16.8 26.0 26.0 26) 26.0
Actuated g/C Ratio 0.49 0.49 0.24 0.24 0.38 0.38 0.	8 0.38
v/c Ratio 0.99 0.82 0.10 0.85 0.95 0.15 0.	7 0.71
Control Delay 59.9 23.5 21.8 46.8 65.6 14.2 16	9 8.9
Queue Delay 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	0.0

Lanes, Volumes, Tir 2: School Rd/North	Tin	2033 I ning Pla	Base+ n: Frida	Site (N y PM P	IBLT) eak Hr							
	≯	-	\mathbf{F}	•	+	•	1	Ť	۲	1	ţ	~
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Total Delay	59.9	23.5		21.8	46.8		65.6	14.2			16.9	8.9
LOS	E	С		С	D		E	В			В	A
Approach Delay		37.5			45.5			54.1			10.9	
Approach LOS		D			D			D			В	
Queue Length 50th (m)	34.1	55.3		1.8	40.0		39.4	6.9			14.0	0.0
Queue Length 95th (m)	#65.8	74.4		5.7	#62.4		#69.7	13.3			22.9	9.0
Internal Link Dist (m)		351.6			357.6			635.4			797.0	
Turn Bay Length (m)	70.0			55.0								180.0
Base Capacity (vph)	397	778		175	406		314	593			561	665
Starvation Cap Reductn	0	0		0	0		0	0			0	0
Spillback Cap Reductn	0	0		0	0		0	0			0	0
Storage Cap Reductn	0	0		0	0		0	0			0	0
Reduced v/c Ratio	0.99	0.80		0.10	0.80		0.95	0.15			0.27	0.71

Intersection Summary Area Type:

CBD Cycle Length: 70 Actuated Cycle Length: 68.8 Natural Cycle: 65

Control Type: Semi Act-Uncoord Maximum v/c Ratio: 0.99 Intersection Signal Delay: 34.4

Intersection LOS: C

ICU Level of Service D

Intersection Capacity Utilization 76.7% Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles.

Splits and Phases: 2: School Rd/North Rd (Hwy 101) & Gibsons Way (Hwy 101)

™ ¶ø2		
30.5 s	39.5 s	
€ 06	→ _{Ø7}	€ ♥ Ø8
30.5 s	17 s	22.5 s

9090 - 718 North Road Traffic Impact Study, Gibsons, BC Creative Transportation Solutions Ltd.